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1. Introduction

Let G be a group with finite symmetric generating set U . Denote by XU the
corresponding Cayley graph. The n-th product set Un is the collection of elements
u1 · ... · un ∈ G such that u1, · · · , un ∈ U . In this article we study the number

ω(U) := lim sup
n→∞

1
n

log |Un|.

The role of ω(U) is to give us information about the exponential behaviour of |Un| as n
increases. The generating sets of virtually nilpotent groups have vanishing exponential
growth rate, since a celebrated theorem of M. Gromov shows that those are exactly the
groups of polynomial growth, [27]. Let ξ > 0. The group G has ξ-uniform exponential
growth if for every finite symmetric generating set U of G, we have ω(U) > ξ. A group
has ξ-uniform uniform exponential growth if every finitely generated subgroup is either
virtually nilpotent or has ξ-uniform exponential growth.

Uniform uniform exponential growth is particularly well-studied in groups of non-
positive curvature. Indeed, groups of uniform uniform exponential growth include
hyperbolic groups, [4, 9, 31], free products of countable families of groups with ξ-uniform
uniform exponential growth (folklore), mapping class groups, [1, 2, 32], or cocompactly
special cubulated CAT(0) groups, [1,24]. It is unknown whether the outer automorphism
group of the free group of rank ⩾ 2 has uniform uniform exponential growth, [6]. All of
the groups in this list admit non-elementary acylindrical actions on Gromov hyperbolic
spaces, [7, 20,35].

1.1. Geometric small cancellation quotients

The main goal of this article is to prove that the class of groups of uniform uniform
exponential growth acting acylindrically on a hyperbolic space is closed under taking
geometric C ′′(λ, ε)-small cancellation quotients in the sense of [20, Definition 6.22]. This
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result is Theorem 1.2 below. Before stating the theorem, we are going to give some
definitions. Let δ > 0. Let G be a group acting by isometries on a δ-hyperbolic space X.

Acylindricity. Let κ, N > 0. The action of G on X is (κ,N)-acylindrical if for every
pair of points x, y ∈ X at distance at least κ, the number of elements u ∈ G moving
each of the points x, y at distance at most 100δ is bounded above by N . In practice, the
number N has two meanings for us:

(1) The largest size of the finite subgroups of virtually cyclic subgroups in G containing
a loxodromic isometry.

(2) The fraction ∆(g)
∥g∥ of the longest intersection ∆(g) between the axis of any pair of

conjugates of an arbitrary loxodromic isometry g of G, with the translation length
∥g∥ of g, whenever this translation is larger than 100δ.

Geometric small cancellation theory. A loxodromic moving family – or set of relations
– is a set of the form

Q =
{

( ⟨grg−1⟩ , gYr)
∣∣ r ∈ R, g ∈ G

}
,

where R ⊂ G is a set of loxodromic isometries r – the relators – stabilizing their quasi-
convex axis Yr ⊂ X. A piece is an intersection of any pair of such axis. The role of the
parameters λ ∈ (0, 1) and ε > 0 in the geometric C ′′(λ, ε)-small cancellation condition
on Q is the following:

▶ The fraction of the length of the longest piece with the shortest translation length
of the relators r ∈ R is at most λ.

▶ The shortest translation length of the relators r ∈ R is at least εδ.

Let K be the normal closure in G of the relator subgroups H in Q. The geometric
C ′′(λ, ε)-small cancellation condition permits to obtain substantial information of the
geometric C ′′(λ, ε)-small cancellation quotient Ḡ = G/K: for instance K is a free product
of relator subgroups, Ḡ locally looks like G and any acylindrical action of G on X induces
another acylindrical action of Ḡ on a quotient δ̄-hyperbolic space X̄ whose hyperbolicity
constant δ̄ is universal.

Main theorem. The following result captures the essence of the main theorem.

Theorem 1.1. — There exists a universal constant λ > 0 such that for every group
G acting acylindrically on a hyperbolic space X, there exist ε > 0 depending only on
the acylindricity and hyperbolicity constants such that the following statements are
equivalent.

(i) G has uniform uniform exponential growth.

(ii) Every geometric C ′′(λ, ε)-small cancellation quotient of G has uniform uniform
exponential growth.
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(iii) There exists a geometric C ′′(λ, ε)-small cancellation quotient of G that has uniform
uniform exponential growth.

The main theorem of this article is more precise:

Theorem 1.2 (Theorem 6.5 & Theorem 6.6). — There exists λ > 0 such that for every
N > 0 the following holds. Let δ > 0, κ ⩾ δ, and ε ⩾ 1010 max{N,κ/δ}. Let G be a
group acting (κ,N)-acylindrically on a δ-hyperbolic space X.

(i) If G has ξ-uniform uniform exponential growth, then every geometric C ′′(λ, ε)-small
cancellation quotient of G has ξ′-uniform uniform exponential growth. The constant
ξ′ depends only on ξ and N .

(ii) If there exist a geometric C ′′(λ, ε)-small cancellation quotient of G that has ξ-
uniform uniform exponential growth, then G has ξ′-uniform uniform exponential
growth. The constant ξ′ depends only on ξ.

Remark 1.3. — The dependence of ε on κ, N and δ is not a strong condition. In fact,
the intersection of the axis of two loxodromic elements in a group acting acylindrically
on a hyperbolic space is controled in terms of κ, N , δ and the translation length of
the loxodromic elements. Thus to prove that a set of relators satisfies the geometric
C ′′(λ, ε)-condition, one usually considers relators of sufficient length compared to κ, N
and δ anyway.

1.2. Beyond short loxodromics

The standard strategy to study uniform exponential growth in hyperbolic groups
exploits the fact that their finite symmetric generating sets have the short loxodromic
property: every n-th power Un of a finite symmetric generating set contains a loxodromic
isometry, for some number n that does not depend on the set U . In general, it is unknown
whether every finitely generated group acting acylindrically on a hyperbolic space has
uniform exponential growth. The acylindrical action on a hyperbolic space yields uniform
exponential growth for finite symmetric generating sets with a long loxodromic isometry.
The short loxodromic property permits to take uniform large powers so that we can
exploit this other situation. However, there is a finitely generated (combinatorial/graded)
small cancellation quotient with an acylindrical action on a hyperbolic space but without
the short loxodromic property, [33]. Our main result does not make use of the short
loxodromic property. The moral of our work is that we can deal with this kind of monster
as long as these are small cancellation quotients of groups of uniform uniform exponential
growth acting acylindrically on a hyperbolic space. However, the aforementioned monster
is a quotient of the free product of all hyperbolic groups. It is unkown whether this free
product has uniform uniform exponential growth, owing to it is unkown whether there is
a universal lower bound for the uniform growth rate of all hyperbolic groups, independent
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of the hyperbolicity constant, [9, Section 14, Question 2]. The following example shows
that the short loxodromic property plays no role in the proof of Theorem 1.2.

Example 1.4. — There are infinite families of geometric small cancellation quotients
that are hyperbolic groups containing arbitrarily large torsion balls. These groups
act acylindrically with uniform acylindricity parameters and have ξ-uniform uniform
exponential growth, for some uniform growth exponent ξ > 0, see [19]. The uniform
uniform exponential growth rate of the small cancellation quotient in Theorem 1.2 (i)
does not depend on the cardinality of large torsion balls, nor does it depend on the
hyperbolicity constant.

1.3. Classical small cancellation groups

We now discuss groups given by a presentation that satisfies the classical C ′′(λ)-small
cancellation condition. We refer to a group admiting such a presentation as classical
C ′′(λ)-small cancellation group. These are exacly the geometric small cancellation
quotients over free groups. In this situation, the geometric small cancellation condition
involving the parameter ε becomes trivial. A classical C ′′(λ)-small cancellation group is
always finitely presented, hence, hyperbolic. Thus it has uniform uniform exponential
growth by [28,31]. However, in that approach the uniform uniform exponential growth
rate depends on λ. The following is a consequence of Theorem 1.2 for the free group case.

Corollary 1.5. — There exist λ > 0 and ξ > 0 such that every classical C ′′(λ)-small
cancellation group has ξ-uniform uniform exponential growth.

Note that there is a generic class of classical C ′′(1/6)-small cancellation groups such
that every 2-generated subgroup is free, [5]. This immediately implies Corollary 1.5 for
this generic class of classical C ′′(1/6)-small cancellation groups, [21].

Remark 1.6. — The classical C ′′(λ)-small cancellation condition in Corollary 1.5 is
reminiscent of our proof that uses geometric small cancellation theory. To this date,
geometric small cancellation theory has not been developed under a geometric C ′(λ, ε)-
small cancellation condition. We expect, however, that this is possible, and thus that our
results hold for classical C ′(λ)-small cancellation groups - finitely and infinitely presented.

1.4. Strategy of proof

To prove Theorem 1.2 (i), we need to discuss the growth of finite symmetric subsets
of sufficiently large energy in groups acting acylindrically on a hyperbolic space X. If G
acts by isometries on X, the ℓ∞-energy L(U) of a finite subset U ⊂ G is defined by

L(U) = inf
x∈X

max
u∈U

|ux− x|.

If U = {g}, the ℓ∞-energy coincides with the translation length of g. The following
example explains why the energy is important in the study of uniform exponential growth.
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Example 1.7. — When G is the fundamental group of a compact hyperbolic manifold,
there exists a constant µ > 0 – the Margulis constant – such that if U ⊂ G is a finite
set with L(U) < µ, then the subgroup of G generated by U is virtually nilpotent. If T
denotes the injectivity radius of the action of G on the universal cover and is smaller
than the Margulis constant µ, then the acylindricity constant κ is about 1/T, [23].

Definition 1.8 (Definition 3.1). — Let α > 0. We say that a finite subset U ⊂ G is
α-reduced at p ∈ X if U ∩ U−1 = ∅ and for every pair of distinct u1, u2 ∈ U ⊔ U−1, the
Gromov product satisfies

(u1p, u2p)p <
1
2 min{|u1p− p|, |u2p− p|} − α− 2δ.

Remark 1.9. — Roughly speaking, if a set U ⊂ G is reduced then the orbit map from
the free group generated by U to X is a quasi-isometric embedding.

The following is a well-known theorem of [4, 31], see also [25].

Theorem 1.10 (Theorem 4.8). — For every κ, N > 0, there exist an integer c > 1 with
the following property. Let δ, α > 0. Let G be a group acting (κ,N)-acylindrically on a
δ-hyperbolic space X. Let U ⊂ G be a finite symmetric subset containing the identity.
Then one of the following conditions holds:

(i) L(U) ⩽ 104 max {κ, δ, α}.

(ii) The subgroup ⟨U⟩ is virtually cyclic and contains a loxodromic element.

(iii) There exists an α-reduced subset S ⊂ U c such that

|S| ⩾ max
{

2, 1
c

|U |
}
.

Moreover,
ω(U) ⩾ 1

c
log |U |.

Our main contribution to Theorem 4.8 is the dependence of the involved constants:
for our purpose it is important that the number c only depends on the acylindricity
parameters κ and N .

Remark 1.11. — If the injectivity radius of the action of G on X is large, then every
finite symmetric subset of G satisfies either (ii) or (iii). In general this is however not
the case. We will later use uniform uniform exponential growth of G in order to apply
Theorem 4.8 to some power of an arbitrary symmetric subset U in G.

Theorem 4.8 with Fekete’s Subadditive Lemma and the fact that ω(Un) = nω(U)
implies the following corollary. It is a weak form of purely exponential growth, [11, 37].
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Corollary 1.12. — For every κ, N > 0, there exists ξ > 1 with the following property.
Let δ > 0 and κ ⩾ δ. Let G be a group acting (κ,N)-acylindrically on a δ-hyperbolic
space X. Let U ⊂ G be a finite symmetric subset containing the identity of energy
L(U) > 104κ that does not generate a virtually cyclic subgroup. Then, for every n ⩾ 0,

enω(U) ⩽ |Un| ⩽ eξnω(U).

To prove Theorem 1.2 (i), we follow a strategy of [19] that estimates product set
growth in Burnside groups. In particular, we use the viewpoint of geometric small
cancellation theory. As previously mentioned, the Small Cancellation Theorem gives
a universal constant δ̄ > 0 such that any geometric small cancellation quotient Ḡ of a
group G acting acylindrically on a δ-hyperbolic space X, for appropriate choice of the
small cancellation parameters, acts acylindrically on a δ̄-hyperbolic space X̄. Let Ū ⊂ Ḡ

be a finite symmetric generating set containing the identity that is not contained in an
elliptic or virtually cyclic subgroup. If the energy of Ū is larger than 104δ̄, then the
exponential growth rate of Ū is bounded below by a universal strictly positive constant
(Lemma 2.23). Otherwise, we fix a pre-image U of Ū in G of minimal energy for the
action of G on X (Lemma 2.32). Such a pre-image may not have large energy > 104δ.
Indeed, it may consist entirely of torsion-elements and thus have small energy < 104δ.
However, our pre-image U is not contained in any elliptic subgroup. Thus some power of
U contains a loxodromic element, hence, for some exponent n, we have L(Un) > 104δ.
We stress that the exponent n depends on the set U . We now apply Theorem 1.10 to Un.
Since U is not contained in any virtually cyclic subgroup, we obtain a reduced subset S
in U cn, which freely generates a free subgroup. Next, we adapt the counting argument
of [13, 19] to prove that for every r ⩾ 1, the proportion of elements in Sr that contain
a large part of a relator is small compared to |Sr| (Proposition 5.9). A combination
of a consequence of Greendlinger’s Lemma (Proposition 5.16) and Fekete’s Subadditive
Lemma then implies that the exponential growth rate of Ū satisfies

ω(Ū) ⩾ β · ω(U).

for
β = sup

θ∈(0,1)
inf

{
θ ·

log 3
2

log (2c) , 1 − θ

}
· 1
c
.

Finally, assume that G has ξ-uniform uniform exponential growth. A combination of this
fact with the previous inequality yields Theorem 1.2 (i). The proof of Theorem 1.2 (ii) is
similar and we postpone its discussion.

1.5. Outline of the article

In Section 2.1 we will overview Gromov hyperbolic spaces, acylindricity and geometric
small cancellation theory. In section 3 we will see that reduced subsets generate free

7



Xabier LEGASPI& Markus STEENBOCK

subgroups with the Geodesic Extension Property. This property will be relevant to the
counting argument of subsection 5.2. In section 4 we generalise work of M. Koubi, [31],
and G. Arzhantseva - I. Lysenok, [4]. The goal is to produce reduced subsets inside
uniform powers of other subsets of isometries. In section 5 we study the subsets of
shortening-free words of a free subgroup generated by a reduced subset. These are infinite
subsets, each depending on a geometric small cancellation family, such that (i) their
elements are not killed when taking the geometric small cancellation quotient and (ii)
their relative growth rate does not decrease too much when taking the geometric small
cancellation quotient. We will prove (i) and (ii) in subsection 5.2 and subsection 5.3,
respectively. Finally, Section 5 is devoted to the proof of our main theorem (Theorem 1.2).
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2. Hyperbolic geometry

We collect some facts on hyperbolic geometry in the sense of Gromov, [28], including
its version of small cancellation theory, [22,29]. See also [12,16,26,30].

2.1. Hyperbolicity

Let X be a metric space. Given two points x, x′ ∈ X we write |x − x′| for the
distance between them and [x, x′] for a geodesic joining them. Recall that there may
be multiple geodesics joining two points. If Y ⊂ X is a subset and x ∈ X a point, we
write d(x, Y ) = infy∈Y |x− y| to denote the distance from x to Y . Given ε ⩾ 0, we let
Y +ε = {x ∈ X : d(x, Y ) ⩽ ε } be the ε-neighbourhood of Y . The Gromov product of
three points x, y, z ∈ X is defined by

(x, y)z = 1
2{|x− z| + |y − z| − |x− y|}.

Definition 2.1. — Let δ ⩾ 0. The metric space X is δ-hyperbolic if it is geodesic and
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for every x, y, z and t ∈ X, the four point inequality holds, that is

(x, z)t ⩾ min {(x, y)t, (y, z)t} − δ.

Convention 2.2. — Let δ ⩾ 0. For the remainder of this section, we assume that the
space X is δ-hyperbolic. If δ = 0, then it can be isometrically embedded in an R-tree,
[26, Chapitre 2, Proposition 6]. Note that X is δ′-hyperbolic for every δ′ ⩾ δ. In this
chapter we always assume for convenience that the hyperbolicity constant δ is positive.

We write ∂X for the Gromov boundary of X. We can use the boundary defined with
sequences converging at infinity, [12, Chapitre 2, Définition 1.1]. Note that we did not
assume the space X to be proper, thus we use the boundary defined with sequences
converging at infinity, [12, Chapitre 2, Définition 1.1]. Hyperbolicity has the following
consequences.

Lemma 2.3 ([23, Lemmas 2.3 and 2.4]). — Let x, y, z ∈ X. Then

(x, y)z ⩽ d(z, [x, y]) ⩽ (x, y)z + 4δ.

Lemma 2.4 ([4, Lemma 2]). — Let i ∈ J1, 2K. Let xi, yi ∈ X. Then

|x1 − y1| + |x2 − y2| ⩽ |x1 − x2| + |y1 − y2| + 2 diam([x1, y1]+8δ ∩ [x2, y2]+8δ).

2.2. Quasi-convexity

Let η ⩾ 0. A subset Y ⊂ X is η-quasi-convex if every geodesic joining two points of
Y is contained in Y +η. For instance, geodesics are 2δ-quasi-convex. A subset Y ⊂ X is
strongly quasi-convex if it is 2δ-quasi-convex and for every y, y′ ∈ Y , the induced path
metric | · |Y on Y satisfies

|y − y′|X ⩽ |y − y′|Y ⩽ |y − y′|X + 8δ.

Quasi-convexity in hyperbolic spaces has the following consequences.

Lemma 2.5 ([12, Chapitre 1, Proposition 3.1];[23, Lemma 2.4]). — Let η ⩾ 0. Let
Y ⊂ X be an η-quasi-convex subset. Then for every x ∈ X and for every y, y′ ∈ Y ,

d(x, Y ) ⩽ (y, y′)x + η + 3δ.

Given a point x ∈ X and a subset Y ⊂ X, then y ∈ Y is a projection of x on Y if

|x− y| ⩽ d(x, Y ) + δ.

Lemma 2.6 ([12, Chapitre 2, Proposition 2.1];[14, Lemma 2.12]). — Let η ⩾ 0. Let
Y ⊂ X be an η-quasi-convex subset.
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(i) Let x ∈ X. Let y be a projection of x on Y . Then for every y′ ∈ Y , (x, y′)y ⩽ η+ δ.

(ii) Let i ∈ J1, 2K. Let xi ∈ X. Let yi be a projection of xi on Y . Then,

|y1 − y2| ⩽ max {|x1 − x2| − |x1 − y1| − |x2 − y2| + 2ε, ε},

where ε = 2η + 3δ.

Lemma 2.7 ([12, Chapitre 10, Proposition 1.2]; [14, Lemma 2.13]). — Let η ⩾ 0. Let
Y ⊂ X be an η-quasi-convex subset. Then for every ε ⩾ η, the subset Y +ε is 2δ-quasi-
convex.

Lemma 2.8 ([22, Lemma 2.2.2 (2)]; [14, Lemma 2.16]). — Let i ∈ J1, 2K. Let ηi ⩾ 0. Let
Yi ⊂ X be an ηi-quasi-convex subset. Then for every ε ⩾ 0,

diam(Y +ε
1 ∩ Y +ε

2 ) ⩽ diam(Y +η1+3δ
1 ∩ Y +η2+3δ

2 ) + 2ε+ 4δ.

2.3. Isometries

Let G be a group acting by isometries on X. Let x ∈ X be a point.

Classification of isometries. Recall that an isometry g ∈ G is either elliptic, i.e. the
orbit ⟨g⟩ · x is bounded, loxodromic, i.e. the map Z → X sending m to gmx is a quasi-
isometric embedding or parabolic, i.e. it is neither loxodromic or elliptic, [12, Chapitre 9,
Théorème 2.1]. Note that these definitions do not depend on the point x.

Translation lengths. To measure the action of an isometry g ∈ G on X we define the
translation length and the stable translation length as

∥g∥ = inf
x∈X

|gx− x|, and ∥g∥∞ = lim
n→+∞

1
n

|gnx− x|.

Note that the definition of ∥g∥∞ does not depend on the point x. These two lengths are
related as follows, [12, Chapitre 10, Proposition 6.4].

(2.1) ∥g∥∞ ⩽ ∥g∥ ⩽ ∥g∥∞ + 16δ.

The isometry g is loxodromic if, and only if, its stable translation length is positive,
[12, Ch. 10, Prop. 6.3].

Axis. The axis of g ∈ G is the set

Ag = {x ∈ X : |gx− x| ⩽ ∥g∥ + 8δ }.
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Lemma 2.9 ([22, Proposition 2.3.3];[14, Proposition 2.28]). — Let g ∈ G. Then Ag is
10δ-quasi-convex and ⟨g⟩-invariant. Moreover, for every x ∈ X,

∥g∥ + 2d(x,Ag) − 10δ ⩽ |gx− x| ⩽ ∥g∥ + 2d(x,Ag) + 10δ.

ℓ∞-Energy. To measure the action of a finite subset of isometries U ⊂ G on X we
define the ℓ∞-energy of U at x and the ℓ∞-energy of U as

L(U, x) = max
u∈U

|ux− x|, and L(U) = inf
x∈X

L(U, x).

The point x is almost-minimizing the ℓ∞-energy of U if L(U, x) ⩽ L(U) + δ. It is easy to
see that the translation length and the ℓ∞-energy are related as follows. For every g ∈ U ,

(2.2) ∥g∥ ⩽ L(U).

2.4. Group action on a δ-hyperbolic space

Let G be a group acting by isometries on X.

Classification of group actions. We denote by ∂G the set of all accumulation points
of an orbit G · x in the boundary ∂X. This set does not depend on the point x. One
says that the action of G on X is

▶ elliptic, if ∂G is empty, or equivalently if one (hence any) orbit of G is bounded;

▶ parabolic, if ∂G contains exactly one point;

▶ loxodromic, if ∂G contains exactly two points;

▶ non-elementary, if ∂G contains at least 3 points, or equivalently if ∂G is infinite.

If the action of G is elliptic, parabolic or loxodromic, we will say that this action is
elementary. In this context, being elliptic (respectively parabolic, loxodromic, etc) refers
to the action of G on X. However, if there is no ambiguity we will simply say that G is
elliptic (respectively parabolic, loxodromic, etc).

Lemma 2.10 ([15, Propositon 3.6]). — If |∂G| ⩾ 2, then G contains a loxodromic iso-
metry.

Acylindricity. For our purpose we require some properness for this action. We will
use an acylindrical action on a metric space, keeping in mind the parameters that appear
in the definition, [20, Proposition 5.31]. Recall that we assumed X to be δ-hyperbolic,
with δ > 0.
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Definition 2.11 (Acylindrical action). — Let κ, N > 0. The group G acts (κ,N)-
acylindrically on the δ-hyperbolic space X if the following holds: for every x, y ∈ X with
|x− y| ⩾ κ, the number of elements u ∈ G satisfying |ux−x| ⩽ 100δ and |uy− y| ⩽ 100δ
is bounded above by N .

Definition 2.12 (Global injectivity radius). — The global injectivity radius of the action
of G on X is

T(G,X) = inf{ ∥g∥∞ : g ∈ G loxodromic },

with the convention inf ∅ = +∞.

Lemma 2.13 ([8, Lemma 4.2]; c.f. [18, Lemma 3.9]). — Assume that the action of G on
X is (κ,N)-acylindrical. Then

T(G,X) ⩾ δ

N
.

Loxodromic subgroups. Let κ ⩾ 1 and l ⩾ 0. Let γ : [a, b] → X be a rectifiable path
with a, b ∈ R ∪ {−∞,∞}. We say that γ is a (κ, l)-quasi-geodesic if for all [a′, b′] ⊂ [a, b],

length(γ[a′, b′]) ⩽ k|γ(a′) − γ(b′)| + l.

Let L ⩾ 0. We say that γ is a L-local (κ, l)-quasi-geodesic if any subpath of γ whose length
is at most L is a (κ, l)-quasi-geodesic. Let H ⩽ G be a loxodromic subgroup with limit set
∂H = {ξ, η}. The H-invariant cylinder, denoted by CH , is the open 20δ-neighborhood
of all 103δ-local (1, δ)-quasi-geodesics with endpoints ξ and η at infinity.

Lemma 2.14 (Invariant cylinder; [15, Lemma 3.13]). — Let H ⩽ G be a loxodromic
subgroup. Then the subset CH is invariant under the action of H and strongly quasiconvex.

Lemma 2.15 ([14, Corollary 2.7]). — Let γ : I → X be a 103δ-local (1, δ)-quasi-geodesic.
Then:

(i) For every t, t′, s ∈ I such that t ⩽ s ⩽ t′, we have (γ(t), γ(t′))γ(s) ⩽ 6δ.

(ii) For every x ∈ X and for every y, y′ ∈ γ, we have d(x, γ) ⩽ (y, y′)x + 9δ.

The maximal loxodromic subgroup containing H is the stabiliser of the set ∂H. For
a loxodromic element g ∈ G, we denote by E(g) the maximal loxodromic subgroup
containing g. We define the equivalence relation ∼g on G by u ∼g v if and only if
u−1v ∈ E(g), for every u, v ∈ G. The fellow travelling constant of a loxodromic element
g ∈ G is

∆(g) = sup{ diam(uA+20δ
g ∩ vA+20δ

g ) : u, v ∈ G, u ̸∼g v }.

Lemma 2.16 ([20, Proof of Proposition 6.29]). — Assume that the action of G on X is
(κ,N)-acylindrical. Let g ∈ G be a loxodromic element. Then

∆(g) ⩽ κ+ (N + 2)∥g∥∞ + 100δ.
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Lemma 2.17 ([20, Lemma 6.5]). — Assume that the action of G on X is acylindrical.
Let g ∈ G be a loxodromic element. Then E(g) is virtually cyclic.

The subgroup H+ ⩽ G fixing pointwise ∂H is an at most index 2 subgroup of
H. The next corollary is a well-known consequence of Lemma 2.10, Lemma 2.17 and
[36, Lemma 4.1].

Corollary 2.18. — Assume that the action of G on X is acylindrical. The set F of all
elements of finite order of H+ is a finite normal subgroup of H. Moreover there exists a
loxodromic element h ∈ H+ such that the map F ⋊ϕ ⟨h⟩ → H+ that sends (f, g) to fg is
an isomorphism, where ϕ : ⟨h⟩ → Aut(F ) is the action by conjugacy of ⟨h⟩ on F .

For a loxodromic element g ∈ G, we denote by F (g) the set of all elements of
finite order of E+(g). We say that g is primitive if its image in E+(g)/F (g) generates
the quotient. The following lemma permits to produce primitive loxodromic elements
uniformly. It will be useful during section section 4.

Lemma 2.19 ([31]; [4]; [25, Lemma 2.7]). — For every κ > 0 and N > 0 there exists a
positive integer n0 with the following property. Let U ⊂ G be a finite symmetric subset
containing the identity. Assume that the action of G on X is (κ,N)-acylindrical. If
L(U) > 50δ, then there exist a primitive loxodromic element g ∈ Un0 such that

∥g∥∞ ⩾
1
2 L(U).

Definition 2.20 (Loxodromic wideness). — The loxodromic wideness of the action of
G on X is

Φ(G,X) = sup{ |F (g)| : g ∈ G loxodromic },

with the convention sup∅ = −∞.

Lemma 2.21 ([34, Lem. 6.8]). — Assume that the action of G on X is (κ,N)-acylindrical.
Then

Φ(G,X) ⩽ N.

Classification of acylindrical actions. Following the proof of D. Osin [34, The-
orem 1.1], one gets the following classification. It already appears in [28].

Lemma 2.22. — Assume that the action of G on X is acylindrical. Then G satisfies
exactly one of the following three conditions.

(i) G is elliptic, or equivalently one (hence any) orbit of G is bounded.

(ii) G is loxodromic, or equivalently G is virtually cyclic and contains a loxodromic
element.

(iii) G is non-elementary, or equivalently H contains a free group F2 of rank 2 and one
(hence any) orbit of F2 is unbounded.

13
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In particular, if the action of G on X is acylindrical, then every isometry g ∈ G is
either elliptic or loxodromic, [8]. The following trichotomy is a direct consequence of the
previous lemma and [9, Theorem 13.1].

Lemma 2.23. — Let G be a group acting acylindrically on a δ-hyperbolic space X. Let
U ⊂ G be a finite symmetric subset containing the identity. Then one of the following
conditions holds:

(T’1) L(U) ⩽ 104δ.

(T’2) The subgroup ⟨U⟩ is virtually cyclic and contains a loxodromic element.

(T’3) ω(U) ⩾ 1
103 log 3.

2.5. Small cancellation theory

Let G be a group acting by isometries on X. We recall that X is a δ-hyperbolic space.

Loxodromic moving family. The following definition generalises the conjugacy closure
of a symmetrised set of relations in classical small cancellation theory.

Definition 2.24 (Loxodromic moving family). — A loxodromic moving family Q is a
set of the form

Q = { (g ⟨h⟩ g−1, gCh) ∈ Q : g ∈ G, h ∈ L },

where L ⊂ G is a set of loxodromic elements and Ch stands for the ⟨h⟩-invariant cylinder.

Let Q be a loxodromic moving family. The fellow travelling constant of Q is

∆(Q, X) = sup{ diam(Y +20δ
1 ∩ Y +20δ

2 ) : (H1, Y1) ̸= (H2, Y2) ∈ Q }.

The injectivity radius of Q is

T(Q, X) = inf{ ∥h∥ : h ∈ H − {1}, (H,Y ) ∈ Q }.

Note that here we require the translation length and not the stable translation length,
which was present in the definition of the global injectivity radius T(G,X). We denote
K = ⟨⟨H | (H,Y ) ∈ Q⟩⟩ and Ḡ = G/K. We denote by π : G↠ Ḡ the natural projection
and write ḡ for π(g) for short, for every g ∈ G. The notation Ū may refer to either a
subset of Ḡ or to π(U), for some U ⊂ G.

Definition 2.25 (Small cancellation condition). — Let λ > 0 and ε > 0. We say that
Q satisfies the geometric C ′′(λ, ε)-small cancellation condition if:

(SC1) ∆(Q, X) < λT(Q, X),

(SC2) T(Q, X) > εδ.

In that case we say that Ḡ is a geometric C ′′(λ, ε)-small cancellation quotient.
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Cone-off space. Let ρ > 0. We denote by Y the collection of cylinders gCh such
that g ∈ G and h ∈ L . Let Y ∈ Y . Note that gCh = Cghg−1 . The cone of radius ρ
over Y , denoted by Zρ(Y ), is the quotient of Y × [0, ρ] by the equivalence relation that
identifies all the points of the form (y, 0). The apex of the cone Zρ(Y ) is the equivalence
class of (y, 0). By abuse of notation, we still write (y, 0) for the equivalence class of
(y, 0). We denote by V the collection of apices of the cones over the elements of Y . Let
ι : Y ↪→ Zρ(Y ) be the map that sends y to (y, ρ). The cone-off space of radius ρ over X
relative to Q, denoted by Ẋρ = Ẋρ(Q, X), is the space obtained by attaching for every
Y ∈ Y , the cone Zρ(Y ) on X along Y according to ι : Y ↪→ Zρ(Y ). There is a natural
metric on Ẋρ(Q) and an action by isometries of G on Ẋρ.

Quotient space. The quotient space of radius ρ over X relative to Q, denoted by
X̄ρ = X̄ρ(Q, X), is the orbit space Ẋρ/K. We denote by ζ : Ẋρ ↠ X̄ρ the natural
projection and write x̄ for ζ(x) for short. Furthermore, we denote by V̄ the image in X̄ρ

of the apices V . We consider X̄ρ as a metric space equipped with the quotient metric,
that is for every x, x′ ∈ Ẋρ

|x̄− x̄′|X̄ = inf
h∈K

|hx− x′|Ẋ .

We note that the action of G on Ẋρ induces an action by isometries of Ḡ on X̄ρ.

Convention 2.26. — In what follows, we are going to assume that X is a metric graph
whose edges all have the same constant length. This is to ensure that both the cone-off
space Ẋρ and the quotient space X̄ρ are geodesic spaces, [10, I.7.19]. This is not a
restrictive assumption, as explained in [20, Section 5.3].

The following lemma summarises Proposition 3.15 and Theorem 6.11 of [14]. It will
be central in the proof of Theorem 1.2.

Lemma 2.27 (Small Cancellation Theorem [14]). — There exist positive numbers δ0, δ̄,
∆0, ρ0 satisfying the following. Let 0 < δ ⩽ δ0 and ρ > ρ0. Let G be a group acting by
isometries on a δ-hyperbolic space X. Let Q be a loxodromic moving family such that
∆(Q, X) ⩽ ∆0 and T(Q, X) > 100π sinh ρ. Then:

(i) X̄ρ is a δ̄-hyperbolic space on which Ḡ acts by isometries.

(ii) Let r ∈ (0, ρ/20]. If for all v ∈ V , the distance |x − v| ⩾ 2r then the projection
ζ : Ẋρ → X̄ρ induces an isometry from B(x, r) onto B(x̄, r).

(iii) Let (H,Y ) ∈ Q. If v ∈ V stands for the apex of the cone Zρ(Y ), then the natural
projection π : G↠ Ḡ induces an isomorphism from Stab(Y )/H onto Stab(v̄).

Remark 2.28. — It is important to note that in this statement the constants δ0, δ̄, ∆0,
ρ0 are independent of G, X, Q or δ. Moreover δ0 and ∆0 (respectively ρ0) can be chosen
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arbitrarily small (respectively large). We will refer to δ0, δ̄, ∆0, ρ0 as the constants of
the Small Cancellation Theorem.

For the remainder of this subsection, we choose δ, ρ, G, X, and Q satisfying the
hypothesis of the Small Cancellation Theorem (Lemma 2.27). The following lemmas are
consequence of the Small Cancellation Theorem.

Lemma 2.29 ([15, Proposition 5.16]). — Let E be an elliptic (respectively loxodromic)
subgroup of G for its action on X. Then the image of E through the natural projection
π : G↠ Ḡ is elliptic (respectively elementary) for its action on X̄ρ.

Lemma 2.30 ([15, Proposition 5.17]). — Let E be an elliptic subgroup of G for its action
on X. Then the natural projection π : G↠ Ḡ induces an isomorphism from E onto its
image.

Lemma 2.31 ([15, Proposition 5.18]). — Let Ē be an elliptic subgroup of Ḡ for its action
on X̄ρ. One of the following holds.

(i) There exists an elliptic subgroup E of G for its action on X such that the natural
projection π : G↠ Ḡ induces an isomorphism from E onto Ē.

(ii) There exists v̄ ∈ V̄ such that Ē ⊂ Stab(v̄).

Lemma 2.32 ([19, Proposition 9.13]). — Let Ū ⊂ Ḡ be a finite set such that L(Ū) ⩽ ρ/5.
If, for every v̄ ∈ V̄ , the set Ū is not contained in Stab(v̄), then there exists a pre-image
U ⊂ G of Ū of energy L(U) ⩽ π sinh L(Ū).

Lemma 2.33 (Greendlinger’s Lemma). — Let x ∈ X. Let g ∈ G. If g ∈ K − {1}, then
there exists (H,Y ) ∈ Q with the following property. Let y0 an y1 be the respective
projections of x and gx on Y . Then

|y0 − y1| > T(H,X) − 2π sinh ρ− 23δ.

Remark 2.34. — The previous statement is obtained from [17, Theorem 3.5] after
applying [17, Proposition 1.11], [14, Proposition 2.4 (2)] and [14, Lemma 2.31]. Note that
in [17, Theorem 3.5] there is an extra assumption saying that the loxodromic moving
family is finite up to conjugacy. That assumption is only needed to make sure that the
action is co-compact, hence the quotient group hyperbolic. We don’t need it here.

Lemma 2.35 ([20, Proposition 5.33]). — If the action of G on X is acylindrical, then so
is the action of Ḡ on X̄ρ.

3. Reduced subsets

Let δ ⩾ 0. In this section, we fix a group G acting by isometries on a δ-hyperbolic
space X. The set of the inverses in G of the elements of U ⊂ G is represented by U−1.
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Definition 3.1. — Let α > 0. We say that a finite subset U ⊂ G is α-reduced at p ∈ X

if U ∩ U−1 = ∅ and for every pair of distinct u1, u2 ∈ U ⊔ U−1,

(u1p, u2p)p <
1
2 min{|u1p− p|, |u2p− p|} − α− 2δ.

Remark 3.2. — If U ⊂ G is α-reduced at p ∈ X, then |up−p| > 2α, for every u ∈ U⊔U−1.

We clarify some vocabulary. Let U ⊂ G be a subset. A letter is an element of the
alphabet U ⊔U−1. A word over U ⊔U−1 is any finite sequence u1 · · ·un with ui ∈ U ⊔U−1.
The number n is called the length of the the given word u1 · · ·un. We denote by |w|U
the length of any word w over U ⊔ U−1. We admit the word of length 0, the empty
word. We write w1 ≡ w2 to express letter-for-letter equality of words w1 and w2 over
U ⊔U−1. A word u1 · · ·un over U ⊔U−1 is reduced if it does not contain a pair of adjacent
letters of the form uiu

−1
i or u−1

i ui. The free group F(U) is the set of reduced words over
U ⊔U−1 with the group operation “concatenate and reduce”. The natural homomorphism
ψ : F(U) → G is the evaluation of the elements of F(U) on G.

3.1. Broken geodesics

The next lemma is used to produce quasi-geodesics by concatenating some sequences
of points of X with geodesics.

Lemma 3.3 (Broken Geodesic Lemma [4, Lemma 1]). — Let n ⩾ 2. Let x0, · · · , xn be
a sequence of n+ 1 points of X. Assume that

(3.1) (xi−1, xi+1)xi + (xi, xi+2)xi+1 < |xi − xi+1| − 3δ,

for every i ∈ J1, n− 2K. Then the following holds.

(i) |x0 − xn| ⩾
n−1∑
i=0

|xi − xi+1| − 2
n−1∑
i=1

(xi−1, xi+1)xi − 2(n− 2)δ.

(ii) (x0, xn)xj ⩽ (xj−1, xj+1)xj + 2δ, for every j ∈ J1, n− 1K.

(iii) The geodesic [x0, xn] lies in the 5δ-neighbourhood of the broken geodesic γ =
[x0, x1] ∪ · · · ∪ [xn−1, xn], while γ is contained in the r-neighbourhood of [x0, xn],
where

r = sup
1⩽i⩽n−1

(xi−1, xi+1)xi + 14δ.

We verify the condition of Lemma 3.3 permitting to obtain broken geodesics.

Proposition 3.4. — Let α > 0. Let U ⊂ G be an α-reduced subset at p ∈ X. Let n ⩾ 2.
Let w ≡ u1 · · ·un be an element of F(U). Consider the sequence of n+ 1 points

x0 = p, x1 = u1p, x2 = u1u2p, · · · , xn = u1 · · ·unp.
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Figure 1: A sequence (xi) satisfying Equation 3.1. This se-
quence does not correspond to a reduced word over a re-
duced subset since for every i, the midpoint mi of the geodesic
[xi−1, xi] falls inside the overlap of two consecutive geodesics.

Figure 2: Another sequence (xi) satisfying Equation 3.1. This
sequence could correspond to a reduced word over an α-reduced
subset since for every i, the midpoint mi of the geodesic
[xi−1, xi] falls at distance at least α from the the overlap
of two consecutive geodesics. The geodesic segments in red
have length 2α. In particular, every geodesic [xi−1, xi] that
does not fall in any of the two extremes has length at least 2α.
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Then

(i) (xi−1, xi+1)xi + (xi, xi+2)xi+1 < |xi − xi+1| − 2(α+ 2δ), for every i ∈ J1, n− 2K.

(ii) |wp− p| ⩾ 1
2 |u1p− p| + 1

2 |unp− p| + 2(n− 1)(α+ δ) + 2δ.

Proof. — (i) Let i ∈ J1, n− 2K. We have

(xi−1, xi+1)xi = (u−1
i p, ui+1p)p, (xi, xi+2)xi+1 = (u−1

i+1p, ui+2p)p

and |xi − xi+1| = |p − ui+1p|. Since w is a reduced word over U ⊔ U−1, we have
u−1

i ̸= ui+1 and u−1
i+1 ̸= ui+2. Hence we can apply the fact that the subset U is

α-reduced at p, obtaining

(u−1
i p, ui+1p)p <

1
2 |ui+1p− p| − α− 2δ, (u−1

i+1p, ui+2p)p <
1
2 |u−1

i+1p− p| − α− 2δ.

It remains to add the two above inequalities to obtain

(xi−1, xi+1)xi + (xi, xi+2)xi+1 < |xi − xi+1| − 2(α+ 2δ).

(ii) Since n ⩾ 2, applying (i) and Lemma 3.3 (i) to the sequence x0, · · · , xn, we obtain

|wp− p| ⩾ |u1p− p| +
n−1∑
i=2

|uip− p| + |unp− p|

− (u−1
1 p, u2p)p −

n−1∑
i=2

[(u−1
i p, ui+1p)p + (u−1

i−1p, uip)p] − (u−1
n−1p, unp)

− 2(n− 2)δ.

Since U is α-reduced at p,

n−1∑
i=2

[(u−1
i p, ui+1p)p + (u−1

i−1p, uip)p] <
n−1∑
i=2

|uip− p| − 2(n− 2)(α+ 2δ).

and

(u−1
1 p, u2p)p <

1
2 |u1p− p| − α− 2δ, (u−1

n−1p, unp) <
1
2 |unp− p| − α− 2δ.

Consequently,

|wp− p| ⩾ 1
2 |u1p− p| + 1

2 |unp− p| + 2(n− 1)(α+ δ) + 2δ.

3.2. Quasi-isometric embedding of a free group

Recall that L(U, p) denotes the ℓ∞-energy of U ⊂ G at p ∈ X (subsection 2.3).
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Proposition 3.5. — Let α > 0. Let U ⊂ G be an α-reduced subset at p ∈ X. Then, for
every w ∈ F(U), we have

2α|w|U ⩽ |wp− p| ⩽ L(U, p)|w|U .

In particular, the natural homomorphism ψ : F(U) → G is injective.

Proof. — Let w ≡ u1 · · ·un be an element of F(U). If n = 0, then there is nothing to do.
If n = 1, then the result is a direct consequence of the fact that the subset U is α-reduced.
Assume that n ⩾ 2. It follows from the triangle inequality that |wp− p| ⩽ L(U, p)n. In
regards to the second inequality, we apply Proposition 3.4 (ii) to the sequence of n+ 1
points

x0 = p, x1 = u1, x2 = u1u2p, · · · , xn = wp = u1 · · ·unp,

to obtain
|wp− p| ⩾ 1

2 |u1p− p| + 1
2 |unp− p| + 2(n− 1)(α+ δ) + 2δ.

According to Remark 3.2, we have

max {|u1p− p|, |unp− p|} ⩾ 2α.

Hence,
|wp− p| ⩾ 2αn.

Finally, if w ∈ F(U) is not the empty word, then |wp − p| ⩾ 2α. By definition,
α > 0. Therefore w ̸= 1 in G. Consequently, the natural homomorphism ψ : F(U) → G

is injective.

3.3. Geodesic extension property

This is the main result of this section. Our proof is based on [19, Lemma 3.2].

Proposition 3.6. — Let α > 0. Let U ⊂ G be an α-reduced subset at p. Let w ≡
u1 · · ·um and w′ ≡ u′

1 · · ·u′
m′ be two elements of F(U). Then U satisfies the geodesic

extension property, that is, if

(p, w′p)wp <
1
2 |ump− p| − δ,

then w is a prefix of w′.

Remark 3.7. — The geodesic extension property has the following meaning: if the
geodesic [p, w′p] extends [p, wp] as a path in X, then w′ extends w as a word over
U ⊔ U−1.

Proof. — The proof is by contrapositive. Assume that w is not a prefix of w′. Let r be
the largest integer such that ui = u′

i, for every i ∈ J1, r − 1K. In particular, r ∈ J1,mK.
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For simplicity, denote
q = u1 · · ·ur−1p = u′

1 · · ·u′
r−1p.

It follows from the four point inequality that

(3.2) (p, w′p)wp ⩾ min{(p, q)wp, (q, wp′)wp} − δ.

From now on, the focus will be on showing that

min{(p, q)wp, (q, wp′)wp} ⩾
1
2 |ump− p|.

Using the definition of Gromov product,

(3.3) (p, q)wp = |wp− q| − (p, wp)q, (q, w′p)wp = |wp− q| − (wp,w′p)q.

We are going to estimate |wp− q|, (p, wp)q, and (wp,w′p)q.

Claim 3.8. — |wp− q| ⩾ 1
2 |urp− p| + 1

2 |ump− p| + 2(m− r)(α+ δ).

Proof. — Note that m − r + 1 ⩾ 1. If m − r + 1 = 1, then there is nothing to do. If
m− r + 1 ⩾ 2, then we apply Proposition 3.4 (ii) to the sequence of m− r + 2 points

q = u1 · · ·ur−1p, u1 · · ·urp, u1 · · ·ur+1p, · · · , wp = u1 · · ·ump,

and we obtain

|wp− q| ⩾ 1
2 |urp− p| + 1

2 |ump− p| + 2(m− r)(α+ δ).

For simplicity, denote

t = u1 · · ·urp and t′ = u′
1 · · ·u′

rp.

Claim 3.9. — (p, wp)q <
1
2 |urp− p|.

Proof. — Applying Lemma 3.3 (ii) and Proposition 3.4 (i) to the sequence of m + 1
points

p, u1p, u1u2p, · · · , wp = u1 · · ·ump,

we get
(p, wp)q ⩽ (u1 · · ·ur−2p, t)q + 2δ.

Since U is α-reduced at p,

(u1 · · ·ur−2p, t)q = (u−1
r−1p, urp)p <

1
2 |urp− p| − α− 2δ.
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Consequently,
(p, wp)q <

1
2 |urp− p| − α.

This proves our claim.

Claim 3.10. — (wp,w′p)q <
1
2 |urp− p|.

Proof. — If r − 1 = m′, then w′p = q and the claim holds. Hence we can suppose that
r − 1 < m′. It follows from the choice of r that ur ̸= u′

r. It follows from the four point
inequality that

min{(t, wp)q, (wp,w′p)q, (w′p, t′)q} ⩽ (t, t′)q + 2δ.

Since U is α-reduced at p,

(t, t′)q = (urp, u
′
rp)q <

1
2 min{|urp− p|, |u′

rp− p|} − α− 2δ.

Consequently,

(3.4) min{(t, wp)q, (wp,w′p)q, (w′p, t′)q} < 1
2 min{|urp− p|, |u′

rp− p|} − α.

We must prove that the minimum of Equation 3.4 is attained by (wp,w′p)q. In order to
do so, let’s see first that the minimum of Equation 3.4 is not achieved by (t, wp)q. Using
the definition of Gromov product,

(t, wp)q = |q − t| − (q, wp)t.

By definition,
|q − t| = |urp− p|.

Recall that m− r + 1 ⩾ 1. If m− r + 1 = 1, we have

(q, wp)t = (u−1
r p, p)p = 0.

If m − r + 1 ⩾ 2, applying Lemma 3.3 (ii) and Proposition 3.4 (i) to the sequence of
m− r + 2 points

q = u1 · · ·ur−1p, t = u1 · · ·urp, u1 · · ·ur+1p, · · · , wp = u1 · · ·ump,

we obtain
(q, wp)t ⩽ (q, u1 · · ·ur+1p)t + 2δ.

Since U is α-reduced,

(q, u1 · · ·ur+1p)t = (u−1
r p, ur+1p)p <

1
2 |urp− p| − α− 2δ.
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Consequently,
(t, wp)q ⩾

1
2 |urp− p| > 1

2 |urp− p| − α.

Thus, the minimum of Equation 3.4 cannot be achieved by (t, wp)q. Similarly, it cannot be
achieved by (w′p, t′)q. Therefore, the only possibility is that it is achieved by (wp,w′p)q.
This proves our claim.

Finally, combining Equation 3.2 and Equation 3.3 with our three claims, we obtain

(p, w′p)wp ⩾ min{(p, q)wp, (q, w′p)wp} − δ >
1
2 |ump− p| − δ.

4. Growth in groups acting on a δ-hyperbolic space

In this section, we review and adapt some of the techniques of M. Koubi. [31] –
further developed by G. Arzhantseva and I. Lysenok, [4]. These techniques permit to
study exponential growth rates of finite symmetric subsets in groups acting by isometries
on hyperbolic spaces in the sense of M. Gromov. In particular, we clarify what are the
involved parameters for acylindrical actions, which permits to obtain Theorem 4.8.

4.1. Growth of maximal loxodromic subgroups.

Let G be a group acting acylindrically on a hyperbolic space X. The goal of this
subsection is to prove that the maximal loxodromic subgroups of G have some sort of
uniform linear growth. We adapt an argument that was written for hyperbolic groups in
[3, p. 484]. Recall that Φ(G,X) stands by the loxodromic wideness of the action of G on
X (Definition 2.20). Given a loxodromic element g ∈ G, we denoted by ∥g∥∞ its stable
translation length (subsection 2.3) and by E(g) the maximal loxodromic subgroup of G
containing g (subsection 2.4).

Proposition 4.1. — Let G be a group acting acylindrically on a hyperbolic space X.
Let U ⊂ G be a finite symmetric subset containing the identity. Let g ∈ G be a primitive
loxodromic element. Then, for every n ⩾ 1,

|Un ∩ E(g)| ⩽ 2Φ(G,X)
( L(U)

∥g∥∞ 4n+ 1
)
.

First, we focus on the case of the cyclic group generated by a loxodromic isometry.

Lemma 4.2. — Let G be a group acting acylindrically on a hyperbolic space X. Let
U ⊂ G be a finite symmetric subset containing the identity. Let g ∈ G be a loxodromic
element. Then, for every n ⩾ 1,

|Un ∩ ⟨g⟩ | ⩽ L(U)
∥g∥∞ 2n+ 1.

23



Xabier LEGASPI& Markus STEENBOCK

Proof. — Let n ⩾ 1. We have,

|Un ∩ ⟨g⟩ | = |{ k ∈ Z : gk ∈ Un }|.

Since the subset U is symmetric,

|{ k ∈ Z : gk ∈ Un }| ⩽ 2|{ k ∈ N − {0} : gk ∈ Un }| + 1.

Let k ⩾ 1 such that gk ∈ Un. Since the element g is loxodromic, we have ∥g∥∞ > 0.
Observe that

k = ∥gk∥∞

∥g∥∞ .

Let x ∈ X. Then

∥gk∥∞ ⩽ ∥gk∥ ⩽ |gkx− x| ⩽ max
h∈Un

|hx− x| = L(Un, x).

Since the point x is arbitrary, we get ∥gk∥∞ ⩽ L(Un). By the triangle inequality,
L(Un) ⩽ nL(U). Hence,

k ⩽
L(U)
∥g∥∞n.

Therefore,
|Un ∩ ⟨g⟩ | ⩽ L(U)

∥g∥∞ 2n+ 1.

We are ready for the proof of the proposition.

Proof of Proposition 4.1. — Let F (g) be the set of all elements of finite order of E+(g).
Recall that F (g) is a normal subgroup of E+(g). Since the action of G on X is acylindrical
and E(g) is a loxodromic subgroup of G, there exists a loxodromic element h ∈ E+(g)
such that the map

F (g) ⋊ϕ ⟨h⟩ → E+(g), (f, k) 7→ fk

is a group isomorphism, where ϕ : ⟨h⟩ → Aut(F (g)) is the action by conjugacy of ⟨h⟩ on
F (g) (Corollary 2.18). Let n ⩾ 1. Let E0 be a set of representatives of E(g)/⟨h⟩. We
have

|Un ∩ E(g)| =
∑

r∈E0

|Un ∩ r ⟨h⟩ |.

First we are going to estimate |E0|. By definition, [E(g) : E+(g)] ⩽ 2. Since the
homomorphism

⟨h⟩ → F (g) ⋊ϕ ⟨h⟩ , k 7→ (1, k)

is a split of the exact sequence,

0 F (g) F (g) ⋊ϕ ⟨h⟩ ⟨h⟩ 0ι π
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we have [E+(g) : ⟨h⟩] = |F (g)| ⩽ Φ(G,X). Consequently,

|E0| ⩽ 2Φ(G,X).

Since the action of G on X is acylindrical, we have Φ(G,X) < ∞ (Lemma 2.21).
Now we are going to estimate |Un ∩ r⟨h⟩| for r ∈ E0. We may assume that Un ∩ r⟨h⟩

is non-empty. Then there exist s ∈ Un ∩ r⟨h⟩. In particular r⟨h⟩ = s⟨h⟩. Hence,

|Un ∩ r ⟨h⟩ | = |Un ∩ s ⟨h⟩ | = |s(s−1Un ∩ ⟨h⟩)| = |s−1Un ∩ ⟨h⟩ |.

Since U is symmetric, s−1 ∈ Un. Since U contains the identity, s−1Un ⊂ U2n. Therefore,

|s−1Un ∩ ⟨h⟩ | ⩽ |U2n ∩ ⟨h⟩ |.

According to Lemma 4.2,
|U2n ∩ ⟨h⟩ | ⩽ L(U)

∥h∥∞ 4n+ 1.

Consequently,
|Un ∩ r ⟨h⟩ | ⩽ L(U)

∥h∥∞ 4n+ 1.

Finally, since the element g is primitive, we have that g ∈ {h, h−1}. It follows from
our two estimations above that

|Un ∩ E(g)| ⩽ 2Φ(G,X)
( L(U)

∥g∥∞ 4n+ 1
)
.

Given a subset U ⊂ G and a loxodromic element g ∈ G, we fix a set of representatives
U(g) of the equivalence relation induced on U by ∼g. Recall that the equivalence relation
∼g on G was previously defined by u ∼g v if and only if u−1v ∈ E(g), for every u, v ∈ G

(subsection 2.4). The reason that makes the set U(g) of interest is that the set of
conjugates of g by the elements of U(g) is a set of “independent” loxodromic elements
and has the same size as U(g). We obtain the following.

Corollary 4.3. — Let G be a group acting acylindrically on a hyperbolic space X. Let
U ⊂ G be a finite symmetric subset containing the identity. Let g ∈ G be a primitive
loxodromic element. Let

a0 = 2Φ(G,X)
( L(U)

∥g∥∞ 8 + 1
)
.

Then,
|U(g)| ⩾ 1

a0
|U |.

Proof. — Consider the surjective map U → U(g) that sends every element of U to its
class representative in U(g). We are going to estimate its injectivity. Let u, v ∈ U such
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that u ∼g v. By definition, u−1v ∈ E(g). Since the subset U is symmetric, u−1v ∈ U2.
Therefore, v ∈ u(U2 ∩ E(g)). Note that |u(U2 ∩ E(g))| = |U2 ∩ E(g)|. Consequently,
each u ∈ U(g) has at most |U2 ∩ E(g)| elements in its equivalence class. According to
Proposition 4.1, |U2 ∩ E(g)| ⩽ a0. Therefore,

|U(g)| ⩾ 1
a0

|U |.

4.2. Producing reduced subsets

Recall that given a loxodromic element g ∈ G, we denoted by ∆(g) its fellow travelling
constant (subsection 2.4). The goal of this subsection is to produce a reduced subset
using the conjugates of a loxodromic isometry of large stable translation length. More
precisely, we will prove the following.

Proposition 4.4. — Let δ > 0 and α > 0. Let G be a group acting acylindrically on a
δ-hyperbolic space X. Let U ⊂ G be a finite symmetric subset containing a loxodromic
element g ∈ U such that ∥g∥∞ > 103δ. Let p ∈ X. Let

b0 = 200
∥g∥∞ [∆(g) + L(U, p) + δ + α].

Then for every b ⩾ b0, the set S = {ugbu−1 : u ∈ U(g) } satisfies the following:

(i) S ⊂ U b+2.

(ii) |S| = |U(g)|.

(iii) S is α-reduced at p.

Proof. — The conclusions (i) and (ii) are immediate. We are going to prove (iii) S is
α-reduced at p (Definition 3.1). By construction, S∩S−1 = ∅. Let i ∈ J1, 2K. Let ui ∈ U .
Let εi ∈ {−1, 1}. Assume that the elements u1g

ε1bu−1
1 and u2g

ε2bu−1
2 are distinct.

Case u1 = u2. Since the elements u1g
ε1bu−1

1 and u2g
ε2bu−1

2 are distinct, we have
ε1 = −ε2. Denote h = u1g

ε1bu−1
1 . It is enough to prove that

(hp, h−1p)p ⩽
b

2 ∥g∥∞ − α− 2δ.

Let η− and η+ be the points of ∂X fixed by ⟨h⟩ and γ : R → X be an ⟨h⟩-invariant 103δ-
local (1, δ)-quasi-geodesic joining η− to η+. This choice is possible since ∥g∥∞ > 103δ. It
follows from Lemma 2.15 applied to γ that

(hp, h−1p)p ⩽ L(U, p) + 6δ.
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It is clear that
L(U, p) + 6δ ⩽ b

2 ∥g∥∞ − α− 2δ.

‘
Case u1 ̸= u2. In particular u1 ̸∼g u2, which means that u−1

1 u2 does not belong to
E(g).

Claim 4.5. — d(p,Ag) ⩽ 1
2 L(U, p) + 5δ.

Proof. — It follows from Lemma 2.9 that

d(p,Ag) ⩽ 1
2 |gp− p| + 5δ.

Moreover, since g ∈ U , we have |gp− p| ⩽ L(U, p). This proves our claim.

Consider the points xi = uip and yi = uig
εibp.

Claim 4.6. — diam([x1, y1]+8δ ∩ [x2, y2]+8δ) ⩽ ∆(g) + L(U, p) + 44δ.

Proof. — Denote σ = d(p,Ag) + 10δ. We have,

max {d(xi, uiAg), d(yi, uiAg)} ⩽ σ.

Recall that the axis Ag is 10δ-quasi-convex (Lemma 2.9). Hence, since σ ⩾ 10δ, the
subset uiA

+σ
g is 2δ-quasi-convex (Lemma 2.7). Consequently,

[xi, yi] ⊂ uiA
+σ+2δ
g .

Therefore,

diam([x1, y1]+8δ ∩ [x2, y2]+8δ) ⩽ diam(u1A
+σ+10δ
g ∩ u2A

+σ+10δ
g ).

According to Lemma 2.8,

diam(u1A
+σ+10δ
g ∩ u2A

+σ+10δ
g ) ⩽ diam(u1A

+13δ
g ∩ u2A

+13δ
g ) + 2(σ + 10δ) + 4δ.

Moreover,
diam(u1A

+13δ
g ∩ u2A

+13δ
g ) ⩽ diam(u1A

+20δ
g ∩ u2A

+20δ
g ).

Since u−1
1 u2 does not belong to E(g),

diam(u1A
+20δ
g ∩ u2A

+20δ
g ) ⩽ ∆(g).

Since the action of G on X is acylindrical, we have ∆(g) < ∞ (Lemma 2.16). Combining
the above estimations with the previous claim, we obtain

diam([x1, y1]+8δ ∩ [x2, y2]+8δ) ⩽ ∆(g) + L(U, p) + 54δ.
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This proves our claim.

Denote si = uig
εibu−1

i .

Claim 4.7. — (s1p, s2p)p ⩽ ∆(g) + 5 L(U, p) + 54δ.

Proof. — By definition,

(s1p, s2p)p = 1
2(|s1p− p| + |s2p− p| − |s1p− s2p|).

By the triangle inequality,

|sip− p| ⩽ |xi − yi| + 2|uip− p|,

|s1p− s2p| ⩾ |y1 − y2| − |u1p− p| − |u2p− p|.

Consequently,

(s1p, s2p)p ⩽
1
2(|x1 − y1| + |x2 − y2| − |y1 − y2|) + 3

2(|u1p− p| + |u2p− p|).

Combining the previous claim with Lemma 2.4, we obtain

|x1 − y1| + |x2 − y2| − |y1 − y2| ⩽ |x1 − x2| + 2(∆(g) + L(U, p) + 44δ).

By the triangle inequality,

|x1 − x2| ⩽ |u1p− p| + |u2p− p|.

Moreover, since ui ∈ U , we have |uip− p| ⩽ L(U, p). Combining the above estimations,
we obtain

(s1p, s2p)p ⩽ ∆(g) + 5 L(U, p) + 44δ.

This proves our claim.

Finally, note that

1
2 min {|s1p− p|, |s2p− p|} − α− 2δ ⩾ b

2 ∥g∥∞ − α− 2δ.

Since b ⩾ b0, we obtain

b

2 ∥g∥∞ − α− 2δ > ∆(g) + 5 L(U, p) + 54δ.

Therefore, the previous claim implies that

(s1p, s2p)p <
1
2 min {|s1p− p|, |s2p− p|} − α− 2δ.
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4.3. Growth trichotomy

We are going to combine the two previous subsections in the following result.

Theorem 4.8 (Theorem 1.10). — For every κ > 0 and N > 0, there exist an integer
c > 1 with the following property. Let δ > 0 and α > 0. Let G be a group acting
(κ,N)-acylindrically on a δ-hyperbolic space X. Let U ⊂ G be a finite symmetric subset
containing the identity. Let p ∈ X be a point almost-minimizing the ℓ∞-energy L(U).
Then one of the following conditions holds:

(T1) L(U) ⩽ 104 max {κ, δ, α}.

(T2) The subgroup ⟨U⟩ is virtually cyclic and contains a loxodromic element.

(T3) There exist a finite subset S ⊂ G with the following properties:

(i) S ⊂ U c,

(ii) |S| ⩾ max
{

2, 1
c |U |

}
,

(iii) S is α-reduced at p.

Moreover, ω(U) ⩾ 1
c log |U |.

Proof. — Let κ > 0 and N > 0. Let n0 be the positive integer of Lemma 2.19 depending
on κ and N . We fix auxiliar parameters

a1 = 200Nn0, and b1 = 200(N + 2) + 500n0 + 700.

We put
c ⩾ max

{
a1, n0(b1 + 2), 2n0(b1 + 2) log a1

log 2

}
.

Let δ > 0 and α > 0. Let G be a group acting (κ,N)-acylindrically on a δ-hyperbolic
space X. Let U ⊂ G be a finite symmetric subset containing the identity. Let p ∈ X be
a point almost-minimizing the ℓ∞-energy L(U). Assume that L(U) > 104 max {κ, δ, α}.
Since L(U) > 50δ, according to Lemma 2.19 there exist a primitive loxodromic element
g ∈ Un0 such that

(4.1) ∥g∥∞ ⩾
1
2 L(U).

In particular ∥g∥∞ ⩾ 103δ. Let H = ⟨U⟩. Note that the loxodromic g belongs to H.
Assume in addition that the subgroup H is not virtually cyclic. We prove (T3). We are
going to apply Corollary 4.3 and Proposition 4.4 to Un0 and g. Let

a0 = 2Φ(G,X)
(L(Un0)

∥g∥∞ 8 + 1
)
, b0 = 200

∥g∥∞ [∆(g) + L(Un0 , p) + δ + α].
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By the triangle inequality,

L(Un0) ⩽ n0 L(U), and L(Un0 , p) ⩽ n0 L(U, p).

Since the point p ∈ X is almost-minimizing the ℓ∞-energy L(U), we have L(U, p) ⩽

L(U) + δ. Since the action of G on X is (κ,N)-acylindrical, it follows from Lemma 2.21
and Lemma 2.16 that

Φ(G,X) ⩽ N, and ∆(g) ⩽ κ+ (N + 2) ∥g∥∞ + 100δ.

Using the hypothesis L(U) > 104 max {κ, δ, α} and Equation 4.1, we obtain,

max
{ L(U)

∥g∥∞ ,
κ

∥g∥∞ ,
δ

∥g∥∞ ,
α

∥g∥∞

}
⩽ 2.

Consequently, we obtain a0 ⩽ a1 and b0 ⩽ b1. Let S = {ugb1u−1 : u ∈ Un0(g) }.
The points (i) and (iii) follow from Proposition 4.4 (i) and (iii).
We are going to prove (ii). According to Proposition 4.4 (ii), we have |S| = |Un0(g)|.

If |Un0(g)| = 1, then u ∼g g, for every u ∈ Un0 . Hence Un0 is contained in E(g). Since U
contains the identity, U ⊂ Un0 . Thus H is virtually cyclic (Lemma 2.17). Contradiction.
Hence |Un0(g)| ⩾ 2. Further, it follows from Proposition 4.1 that |Un0(g)| ⩾ 1

a1
|Un0 |.

Since U contains the identity, |Un0 | ⩾ |U |. Therefore,

|S| ⩾ max
{

2, 1
a1

|U |
}
.

This implies our point (ii).
Let’s verify the last conclusion about ω(U). Let n ⩾ 1. We have

|Un0(b1+2)n| ⩾ |Sn| ⩾ |S|n ⩾ max
{

2n,

( 1
a1

|U |
)n}

,

where the first inequality follows from (i); the second from (iii), which implies that the
natural homomorphism F(S) → G is injective (Proposition 5.16); and the third from (ii).
Consequently,

ω(U) = lim sup
n→∞

1
n0(b1 + 2)n log |Un0(b1+2)n| ⩾ 1

n0(b1 + 2) max
{

log 2, log
( 1
a1

|U |
)}

.

Finally, note that
1
a1

|U | ⩾ |U |
1
2 ⇔ log |U | ⩾ 2 log a1.

If log |U | ⩾ 2 log a1, we obtain

ω(U) ⩾ 1
n0(b1 + 2) log

( 1
a1

|U |
)
⩾

1
2n0(b1 + 2) log |U |.
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If log |U | < 2 log a1, we obtain

ω(U) ⩾ 1
n0(b1 + 2) log 2 ⩾

log 2
2n0(b1 + 2) log a1

log |U |.

5. Shortening and shortening-free words

In the context of classical small cancellation theory, Greendlinger’s Lemma states that
if a word over the free generating set of a free group represents the identity element in a
small cancellation quotient, then it should contain a subword corresponding to a large
portion of a relator. This section is structured as follows. First, we are going to formalise
the notion of “large portion of a relator” with the definition of shortening word in the
context of actions by isometries on hyperbolic spaces. Then, we are going to find a lower
bound for the number of shortening-free words of free subgroups generated by reduced
subsets of low energy. Finally, we will see that these shortening-free words embedd in
geometric small cancellation quotients of appropriate parameters after using a suitable
version of Greendlinger’s Lemma (Lemma 2.33).

Global parameters and hypothesis for this section. Let δ0 and ∆0 be the constants of
the Small Cancellation Theorem (Lemma 2.27). We fix once for all during this section

L0 > 0, and τ0 = 106(δ0 + L0 + ∆0).

Let
0 < δ ⩽ δ0, α ⩾ 200δ0, and τ ⩾ τ0.

Let G be a group acting by isometries on a δ-hyperbolic space X. Let U ⊂ G be an
α-reduced subset at p ∈ X (Definition 3.1). Let Q be a loxodromic moving family
(Definition 2.24). We assume that

0 < L(U, p) ⩽ L0, and ∆(Q, X) ⩽ ∆0.

5.1. Shortening words

Here we study shortening words. Part of this subsection is based on [19, Section 3.1].

Definition 5.1 (Shortening word). — Let w ≡ u1 · · ·un be an element of F(U). Let
(H,Y ) ∈ Q. We say that w is a τ -shortening word over (H,Y ) if it satisfies the following.
Consider the points x0 = p and xn = wp. Let y0 and yn be respective projections of x0

and xn on Y . Then,

(S1) |y0 − yn| > τ .

(S2) |x0 − y0| < 1
2 |u1p− p| − 100δ, and |xn − yn| < 1

2 |unp− p| − 100δ.
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A minimal τ -shortening word over (H,Y ) is a τ -shortening word over (H,Y ) none of
whose proper prefixes are τ -shortening words over (H,Y ).

Remark 5.2. — Applying the triangle inequality, we observe that the choice τ ⩾ τ0

implies that τ -shortening words over (H,Y ) are distinct form the identity:

|x0 − xn| ⩾ |y0 − yn| − |x0 − y0| − |xn − yn| > 0.

Proposition 5.3. — Let w ≡ u1 · · ·un be a τ -shortening word over (H,Y ) ∈ Q. Consider
the sequence of n+ 1 points

x0 = p, x1 = u1p, x2 = u1u2p, · · · , xn = u1 · · ·unp.

Let yi be a projection of xi on Y , for every i ∈ J0, nK. Then,

|xi − yi| <
1
2 min{|uip− p|, |ui+1p− p|} − 100δ,

for every i ∈ J1, n− 1K.

Proof. — Let i ∈ J1, n− 1K. Let zi be a projection of xi on [y0, yn]. Since Y is 10δ-quasi-
convex (Lemma 2.14), there exist z′

i ∈ Y such that |zi − z′
i| ⩽ 11δ. By definition,

|xi − yi| ⩽ d(xi, Y ) + δ ⩽ |xi − z′
i| + δ.

By the triangle inequality,

|xi − z′
i| ⩽ |xi − zi| + |zi − z′

i|.

By definition, |xi − zi| ⩽ d(xi, [y0, yn]) + δ. According to Lemma 2.3,

d(xi, [y0, yn]) ⩽ (y0, yn)xi + 4δ.

We claim that (y0, yn)xi ⩽ (x0, xn)xi + 2δ. It follows from the four point inequality that

min{(x0, y0)xi , (y0, yn)xi , (yn, xn)xi} ⩽ (x0, xn)xi + 2δ.

One can argue using the Broken Geodesic Lemma (Lemma 3.3) and the fact that w is a
τ -shortening to prove that the minimum must be attained by (y0, yn)xi . Now applying
the Broken Geodesic Lemma (Lemma 3.3 (ii)),

(x0, xn)xi ⩽ (xi−1, xi+1)xi + 2δ.

Moreover, (xi−1, xi+1)xi = (u−1
i p, ui+1p)p. Since the subset U is α-reduced and α ⩾ 200δ,

(u−1
i p, ui+1p)p <

1
2 min {|uip− p|, |ui+1p− p|} − 118δ.
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Combining all the estimations, we obtain

|xi − yi| <
1
2 min{|uip− p|, |ui+1p− p|} − 100δ.

Proposition 5.4. — Let w ≡ u1 · · ·un be a τ -shortening word over (H,Y ) ∈ Q. The
following holds.

(i) We have
|w|U ⩾

τ − 50δ
L(U, p) .

(ii) If w is a minimal τ -shortening word over (H,Y ), then

|w|U ⩽
τ

α
+ 2.

Proof. — Consider the sequence of n+ 1 points

x0 = p, x1 = u1p, x2 = u1u2p, · · · , xn = u1 · · ·unp.

Let yi be a projection of xi on Y , for every i ∈ J0, nK.

(i) Since L(U, p) > 0 and w is distinct from the identity (Remark 5.2), it follows from
the triangle inequality that,

|w|U ⩾
|x0 − xn|
L(U, p) .

According to (S1), we have |y0 −yn| > τ . Since Y is 10δ-quasi-convex (Lemma 2.14)
and τ ⩾ 23δ, the strong contraction property of Y (Lemma 2.6) implies

|x0 − xn| ⩾ |x0 − y0| + |y0 − yn| + |yn − xn| − 46δ.

Consequently, |x0 − xn| > τ − 50δ. Therefore,

|w|U ⩾
τ − 50δ
L(U, p) .

(ii) Assume that w is a minimal τ -shortening word over (H,Y ). Let w′ ≡ u1 · · ·un−1.
By definition,

|w|U = |w′|U + 1.

In view of Proposition 3.4 (ii), we deduce

|w′p− p| ⩾ 1
2 |u1p− p| + 1

2 |un−1p− p| + α(|w′|U − 1).
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By the triangle inequality,

|w′p− p| ⩽ |xn−1 − yn−1| + |yn−1 − y0| + |y0 − x0|.

Since w is a τ -shortening word over (H,Y ), the property (S2) implies

|x0 − y0| < 1
2 |u1p− p| − 100δ.

According to Proposition 5.3,

|xn−1 − yn−1| < 1
2 |un−1p− p| − 100δ.

Therefore, since w′ is not a τ -shortening over (H,Y ), we have |yn−1 − y0| ⩽ τ .
Consequently, |w′|U ⩽ τ

α + 1. Thus, |w|U ⩽ τ
α + 2.

Proposition 5.5. — Let (H1, Y1), (H2, Y2) ∈ Q. Let w ∈ F(U). If w is a τ -shortening
word over both (H1, Y1) and (H2, Y2), then (H1, Y1) = (H2, Y2).

Proof. — Assume that w is a τ -shortening word over (H1, Y1) and (H2, Y2). In order to
prove that (H1, Y1) = (H2, Y2), it is enough to show that diam(Y +20δ

1 ∩Y +20δ
2 ) > ∆(Q, X).

Since the subsets Y1 and Y2 are 10δ-quasi-convex (Lemma 2.14), it follows from Lemma 2.8
that

diam(Y +20δ
1 ∩ Y +20δ

2 ) ⩾ diam(Y +13δ
1 ∩ Y +13δ

2 ) ⩾ diam(Y +2L0
1 ∩ Y +2L0

2 ) − 4L0 − 4δ0.

Let i ∈ J1, 2K. Let xi and zi be respective projections of p and wp on Yi. We claim that
x1, z1 ∈ Y +2L0

1 ∩ Y +2L0
2 . Since w is a shortening word over (Hi, Yi), it follows from (S2)

that
max{|p− xi|, |wp− zi|} ⩽ L0.

According to the triangle inequality,

|x1 − x2| ⩽ |x1 − p| + |p− x2|, |z1 − z2| ⩽ |z1 − p| + |p− z2|.

Consequently,
max{|x1 − x2|, |z1 − z2|} ⩽ 2L0.

Therefore, x1, z1 ∈ Y +2L0
2 . This proves the claim. Thus,

diam(Y +2L0
1 ∩ Y +2L0

2 ) ⩾ |x1 − z1|.

Since w is a shortening over (H1, Y1), it follows from (S1) that |x1 − z1| > τ . Finally,
since τ ⩾ τ0, we obtain that diam(Y +20δ

1 ∩ Y +20δ
2 ) > ∆(Q, X).
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Figure 3: Scheme for the proof of Proposition 5.5.

Proposition 5.6. — For every (H,Y ) ∈ Q, there exist at most two minimal τ -shortening
words over (H,Y ).

Proof. — Let (H,Y ) ∈ Q. Let η− and η+ be the points of ∂X fixed by H and γ : R → X

be an 103δ-local (1, δ)-quasi-geodesic joining η− to η+. Let q be a projection of p on γ.
Without loss of generality, we may assume that q = γ(0). Let S(H,Y ) denote the set
of elements in F(U) that are τ -shortening words over (H,Y ). Assume that S(H,Y ) is
non-empty, otherwise the statement is true. We decompose S(H,Y ) in two sets as follows:
an element w ∈ S(H,Y ) belongs to S +

(H,Y ) (respectively, S −
(H,Y )) if there is a projection

γ(t) of wp on γ with t ⩾ 0 (respectively, t ⩽ 0). Observe that a priori the sets S −
(H,Y )

and S +
(H,Y ) are not disjoint, but that will not be an issue for the rest of the proof.

Let w1, w2 ∈ S +
(H,Y ). Let q1 = γ(t1) and q2 = γ(t2) be the respective projections of

w1p and w2p on γ. Without loss of generality, we may assume that 0 ⩽ t1 ⩽ t2.

Claim 5.7. — The word w1 is a prefix of w2.

Proof. — We are going to apply the Geodesic Extension Property (Proposition 3.6). By
the triangle inequality,

(5.1) (p, w2p)w1p ⩽ |w1p− q1| + (w2p, p)q1 .

Assume that w1 ≡ u1 · · ·um.
(a) Let’s estimate |w1p− q1|. By definition, the H-invariant cylinder Y is contained

in the 20δ-neighbourhood of γ. Consequently,

|w1p− q1| = d(w1p, γ) ⩽ d(w1p, Y ) + 20δ.
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Since w1 is a τ -shortening word over (H,Y ), the property (S2) implies

d(w1p, Y ) < 1
2 |ump− p| − 100δ.

Therefore,

(5.2) |w1p− q1| < 1
2 |ump− p| − 80δ.

(b) Let’s estimate (w2p, p)q1 . By definition,

(w2p, p)q1 = 1
2(|w2p− q1| + |p− q1| − |w2p− p|).

Since w2 is a τ -shortening word over (H,Y ), the property (S1) implies

|q2 − q| > τ.

Since Y is 10δ-quasi-convex (Lemma 2.14) and τ ⩾ 23δ, the strong contraction property
of Y (Lemma 2.6) implies

|w2p− p| ⩾ |w2p− q2| + |q2 − q| + |q − p| − 46δ.

Again by definition,

|q2 − q| = |q2 − q1| + |q1 − q| − 2(q2, q)q1 .

According to Lemma 2.15 (i),
(q2, q)q1 ⩽ 6δ.

Note that here we have used the assumption 0 ⩽ t1 ⩽ t2. By the triangle inequality,

|w2p− q1| ⩽ |w2p− q2| + |q2 − q1|.

Therefore,
|w2p− p| ⩾ |w2p− q1| + |q1 − p| − 58δ.

Consequently,

(5.3) (w2p, p)q1 ⩽ 29δ.

Finally, combining Equation 5.1, Equation 5.2 and Equation 5.3, we obtain

(p, w2p)w1p ⩽
1
2 |ump− p| − δ.

Therefore, the Geodesic Extension Property (Proposition 3.6) implies that w1 is a prefix
of w2. This proves our claim.
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If w1 is not a proper prefix of w2, then the claim above implies that w1 = w2.
Therefore S +

(H,Y ) has at most one element satisfying the statement of the proposition. By
symmetry, S −

(H,Y ) has at most one element satisfying the statement. Therefore S(H,Y )

has at most two elements satisfying the statement.

Figure 4: Scheme for the proof of Proposition 5.6.

5.2. The growth of shortening-free words

Here we count shortening-free words. The counting is based on [19, Section 3.22].

Definition 5.8 (Shortening-free word). — Let w ≡ u1 · · ·un be an element of F(U).
Let (H,Y ) ∈ Q. We say that w contains a τ -shortening word over (H,Y ) if w splits
as w ≡ w0w1w2, where w1 is a τ -shortening word over (H,Y ). We say that w is a
τ -shortening-free word if for every (H,Y ) ∈ Q, the word w does not contain any τ -
shortening word over (H,Y ). We denote by F (τ) ⊂ F(U) the subset of τ -shortening-free
words.

Recall that the natural homomorphism F(U) → G is injective (Proposition 3.5).
Hence, we can safely identify the elements of F(U) with their images in G. The ball
BU (n) ⊂ F(U) of radius n is the set of reduced words over the alphabet U ⊔ U−1 of
length |w|U ⩽ n, for every n ⩾ 0. Note that BU (n) = (U ⊔ U−1 ⊔ {1})n when n ⩾ 1.
Recall that we have fixed global hypothesis at the beginning of this section. The goal of
this subsection is to obtain the following estimation.
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Proposition 5.9. — For every θ ∈ (0, 1/2), there exist τ1 ⩾ τ0 depending on θ, δ0, L0

and ∆0 with the following property. If |U | ⩾ 2 and τ ⩾ τ1, then for every n ⩾ 0, we have

|F (τ) ∩BU (n+ 1)| ⩾ (1 − θ)(2|U | − 1)|F (τ) ∩BU (n)|.

In particular, for every n ⩾ 0

|F (τ) ∩BU (n)| ⩾ (1 − θ)n(2|U | − 1)n.

We are going to divide the proof of Proposition 5.9 into a few lemmas. First we fix
some notations. We let

Z = {w ∈ F(U) : w ≡ w0u,w0 ∈ F (τ), u ∈ U ⊔ U−1 }.

For every (H,Y ) ∈ Q, we denote by Z(H,Y ) ⊂ Z the set of elements w ∈ Z that split as
w ≡ w1w2, where w1 ∈ F (τ) and w2 is a τ -shortening word over (H,Y ).

Lemma 5.10. — The set Z is contained in the disjoint union of F (τ) and
⋃

(H,Y )∈Q Z(H,Y ).

Proof. — The sets F (τ) and
⋃

(H,Y )∈Q Z(H,Y ) are disjoint as a direct consequence of the
definitions. Let w ∈ Z − F (τ). Since w ∈ Z, there exist w0 ∈ F (τ) and u ∈ U ⊔ U−1

such that w ≡ w0u. Since w /∈ F (τ), there exist (H,Y ) ∈ Q and a subword w2 of w
that is a τ -shortening word over (H,Y ). It follows from the definition of F (τ) that every
subword of w0 must also be in F (τ). In particular, the word w2 cannot be a subword of
w0. Hence, the only possibility is that w2 is a suffix of w. Therefore, w ∈ Z(H,Y ).

Our Lemma 5.10 implies that for every n ⩾ 0,

(5.4) |F (τ) ∩BU (n)| ⩾ |Z ∩BU (n)| −
∑

(H,Y )∈Q

|Z(H,Y ) ∩BU (n)|.

The next step is to estimate each term in the right side of the above inequality. The
following lemma is a direct consequence of the definition of Z.

Lemma 5.11. — For every n ⩾ 0,

|Z ∩BU (n+ 1)| = (2|U | − 1)|F (τ) ∩BU (n)|.

Lemma 5.12. — Let

a = 2, b =
⌈

τ0
200δ0

+ 2
⌉

+ 1, M =
⌊
τ − 50δ0
L0

⌋
.

If |U | ⩾ 2, then for every n ⩾ 0,

∑
(H,Y )∈Q

|Z(H,Y ) ∩BU (n)| ⩽ a(2|U | − 1)b|F (τ) ∩BU (n−M)|.
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Proof. — Assume that |U | ⩾ 2. Let n ⩾ 0. Note that for every (H,Y ) ∈ Q, the set
Z(H,Y ) is empty whenever there is no τ -shortening word over (H,Y ). We denote by Q0

the set of (H,Y ) ∈ Q for which there exist a τ -shortening word over (H,Y ). We have,

∑
H∈Q

|Z(H,Y ) ∩BU (n)| =
∑

(H,Y )∈Q0

|Z(H,Y ) ∩BU (n)|.

The desired estimation is obtained from the two estimations of the claims below:

Claim 5.13. — |Z(H,Y ) ∩BU (n)| ⩽ a|F (τ) ∩BU (n−M)|, for every (H,Y ) ∈ Q0.

Proof. — Let (H,Y ) ∈ Q0. Let w ∈ Z(H,Y ) ∩ BU (n). Since w ∈ Z(H,Y ), there exist
w1 ∈ F (τ) and a τ -shortening word w2 over (H,Y ) such that w ≡ w1w2. We are going
to describe the possible choices of w1 and w2. Since w is a reduced word over U ⊔ U−1,

|w1|U = |w|U − |w2|U .

According to Proposition 5.4 (i),

|w2|U ⩾
τ − 50δ0
L0

⩾M ⩾ 0.

Therefore, w1 ∈ F (τ) ∩BU (n−M). Since w ∈ Z, the prefix consisting of all but the last
letter is a τ -shortening free word. Thus, no proper prefix of w2 is a τ -shortening word. It
follows from Proposition 5.6 that there are most a = 2 possible choices for w2. Therefore,
there are at most a|F (τ) ∩BU (n−M)| choices for w. This proves our claim.

Claim 5.14. — |Q0| ⩽ (2|U | − 1)b

Proof. — Let d =
⌈

τ0
200δ0

+ 2
⌉
. Since the free group F(U) has rank |U | ⩾ 2, we have

|BU (d)| = |U |(2|U | − 1)d − 1
|U | − 1 ⩽ (2|U | − 1)d+1 = (2|U | − 1)b.

Consequently, it suffices to show that there exists an injective map χ : Q0 → BU (d). Let
(H,Y ) ∈ Q0. By definition, there exist a τ -shortening word w over (H,Y ). Note that
since τ ⩾ τ0, we have that w is a τ0-shortening word over (H,Y ). Let w′ be the shortest
prefix of w that is a τ0-shortening word over (H,Y ). In particular, w′ is a minimal
τ0-shortening word over (H,Y ). We define χ(H,Y ) = w′. Since α ⩾ 200δ0, according
to Proposition 5.4 (ii), |w′|U ⩽ d. According to Proposition 5.5, there exist at most one
(H,Y ) ∈ Q such that w′ is a τ0-shortening word over (H,Y ). Hence χ is well-defined
and injective. This proves our claim.

Lemma 5.15. — For every θ ∈ (0, 1/2) and a, b ⩾ 1, there exist M0 ⩾ 0 with the following
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property. Let

µ = (1 − θ)(2|U | − 1), ξ = a(2|U | − 1)b, and σ = θ

2(1 − θ)ξ .

If |U | ⩾ 2, then for every M ⩾M0, we have

1
µM

⩽ σ.

Proof. — Let θ ∈ (0, 1/2) and a, b ⩾ 1. Let M0 = max
{
b, d1

d2

}
, where d1, d2 are constants

depending only on θ, a, b whose exact value will be precised below. Let µ, ξ, σ as above.
Assume that |U | ⩾ 2. Let M ⩾M0. In order to prove that 1

µM ⩽ σ, it is enough to show
that log

(
1

σµM

)
⩽ 0. A first computation yields

log
( 1
σµM

)
= − log σ − log

(
µM

)
,

log(σ) = log
(

θ

2(1 − θ)a

)
− b log(2|U | − 1),

log
(
µM

)
= M log(1 − θ) +M log(2|U | − 1).

Consequently,

log
( 1
σµM

)
⩽ (b−M) log(2|U | − 1) −M log(1 − θ) − log

(
θ

2(1 − θ)a

)
.

Since M ⩾ b and |U | ⩾ 2, we have

(b−M) log(2|U | − 1) ⩽ (b−M) log 3.

Therefore,

log
( 1
σµM

)
⩽ −M [log 3 + log(1 − θ)] + b log 3 − log

(
θ

2(1 − θ)a

)
.

We put
d1 = b log 3 + log(2a) − log

(
θ

1 − θ

)
, d2 = log 3 + log(1 − θ).

Since a ⩾ 1, b ⩾ 1 and θ ∈ (0, 1/2), we have min{d1, d2} > 0. Finally, since M ⩾ d1
d2

, we
obtain, log

(
1

σµM

)
⩽ 0.

We are ready to prove the proposition.

Proof of Proposition 5.9. — Let θ ∈ (0, 1/2). We are going to define the constant τ1.
Let

a = 2, b =
⌈

τ0
200δ0

+ 2
⌉

+ 1.
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Let M0 ⩾ 0 be the constant of Lemma 5.15 depending on θ, a, b. We put

τ1 = max{τ0, L0(M0 + 1) + 50δ0}.

Assume that |U | ⩾ 2 and τ ⩾ τ1. We define the auxiliary parameters

µ = (1 − θ)(2|U | − 1), ξ = a(2|U | − 1)b, σ = θ

2ξ(1 − θ) , and M =
⌊
τ − 50δ0
L0

⌋
.

In particular, M ⩾M0. For every n ⩾ 0, we let

c(n) = |F (τ) ∩BU (n)|.

We must prove that for every n ⩾ 1,

c(n) ⩾ µc(n− 1).

The proof goes by induction on n:
Base step. We claim that c(1) ⩾ µ. Note that BU (1) = U ⊔ U−1 ⊔ {1}. Therefore,

it is enough to show that U ⊔ U−1 ⊔ {1} is contained in F (τ). Let w ∈ U ⊔ U−1 ⊔ {1}.
In particular, |w|U = 1. Therefore, w ∈ F (τ) if and only if for every (H,Y ) ∈ Q, the
element w is not a τ -shortening word over (H,Y ). According to Proposition 5.4 (i), for
every (H,Y ) ∈ Q and for every τ -shortening word v over (H,Y ), we have |v|U ⩾ τ−50δ0

L0
.

Since τ ⩾ τ0, we have 1 < τ−50δ0
L0

. Consequently, w ∈ F (τ). This proves our claim.
Inductive step. Let n ⩾ 1. Assume that c(m) ⩾ µc(m− 1), for every m ∈ J1, nK. We

claim that c(n+ 1) ⩾ µc(n). According to Equation 5.4,

c(n+ 1) ⩾ |Z ∩BU (n+ 1)| −
∑

(H,Y )∈Q

|Z(H,Y ) ∩BU (n+ 1)|.

It follows from Lemma 5.11 and Lemma 5.12 that

c(n+ 1) ⩾ (2|U | − 1)c(n) − ξc(n+ 1 −M).

The induction hypothesis implies that for every k ⩾ 0, we have c(n− k) ⩽ µ−kc(n). Note
that M − 1 ⩾ 0. Therefore, specifying the choice k = M − 1, we obtain

c(n+ 1) ⩾
(

1 − ξµ

2|U | − 1
1
µM

)
(2|U | − 1)c(n).

Recall that we defined µ = (1 − θ)(2|U | − 1). Hence, in order to prove our claim, it is
enough to show that

ξµ

2|U | − 1
1
µM

⩽ θ.
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Since M ⩾M0, it follows from Lemma 5.15 that

1
µM

⩽ σ.

Finally, note that

ξµ

2|U | − 1σ = ξ(1 − θ)(2|U | − 1)
2|U | − 1

θ

2ξ(1 − θ) = θ

2 ⩽ θ.

This proves our claim.

5.3. The injection of shortening-free words

Let ρ0 be the constant of the Small Cancellation Theorem (Lemma 2.27). Let τ1 ⩾ τ0

be the constant of Proposition 5.9 depending on θ = 1/3, δ0, L0 and ∆0. Let

ρ ⩾ max{ρ0, log(2[4τ1 + 23δ0] + 1)}.

In addition to the global hypothesis for this section, we assume that

T(Q, X) ⩾ 100π sinh ρ.

Denote K = ⟨⟨H | (H,Y ) ∈ Q⟩⟩ and Ḡ = G/K. The goal of this subsection is to prove:

Proposition 5.16. — There exists τ2 ⩾ τ1 depending on δ0, L0 and ∆0 with the following
property. The restriction of the natural homomorphism F(U) → G to the subset of
τ2-shortening-free words is an injection.

Lemma 5.17. — Let w ≡ u1 · · ·un be an element of F(U). Let (H,Y ) ∈ Q. Let y0 and
yn be respective projections of p and wp on Y . If |y0 − yn| > 2τ , then w contains a
(2τ − τ0)-shortening word over a conjugate of (H,Y ).

Proof. — Consider the sequence of n+ 1 points

x0 = p, x1 = u1p, x2 = u1u2p, · · · , xn = u1 · · ·unp.

Let yi be a projection of xi on Y , for every i ∈ J0, nK. Assume that |y0 − yn| > 2τ . Since
Y is 10δ-quasi-convex (Lemma 2.14) and τ ⩾ 23δ, the strong contraction property of Y
(Lemma 2.6) implies that there exist y′

0, y
′
n ∈ [p, wp] such that

max{|y0 − y′
0|, |yn − y′

n|} ⩽ 23δ ⩽ 23δ0.

Consider the broken geodesic

γw =
n⋃

i=1
(u1 · · ·ui−1)[p, uip].
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Let y′′
0 and y′′

n be respective projections of y′
0 and y′

n on γw. Up to permuting y′
0 and y′

n we
may assume that p, y′′

0 , y′′
n and wp are ordered in this way along γw. In particular, there

are i ⩽ n−1 and j ⩽ n−1 such that y′′
0 ∈ (u1 · · ·ui)[p, ui+1p] and y′′

n ∈ (u1 · · ·uj)[p, uj+1p].
Since y′′

0 comes before y′′
n on γw, we have i ⩽ j. Let w0 ≡ u1 · · ·ui+1 and take the word

w1 such that w0w1 ≡ u1 · · ·uj . We are going to prove that w1 is a (2τ − τ0)-shortening
word over (w−1

0 Hw0, w
−1
0 Y ). The property (S2) follows from the fact that U is 200δ0-

reduced at p and from the Broken Geodesic Lemma (Lemma 3.3). Let’s prove (S1), i.e.
|yi+1 − yj | > 2τ − τ0. By the triangle inequality,

|yi+1 − yj | ⩾ |y0 − yn| − |y0 − yi+1| − |yn − yj |,

|y0 − yi+1| ⩽ |y0 − y′
0| + |y′

0 − y′′
0 | + |y′′

0 − xi+1| + |xi+1 − yi+1|,

|yn − yj | ⩽ |yn − y′
n| + |y′

n − y′′
n| + |y′′

n − xj | + |xj − yj |.

Since [x0, xn] is contained in the 5δ-neighbouhood of γw (Lemma 3.3 (iii)),

max{|y′
0 − y′′

0 |, |y′
n − y′′

n|} ⩽ 5δ ⩽ 5δ0.

Since y′′
0 ∈ (u1 · · ·ui)[p, ui+1p] and y′′

n ∈ (u1 · · ·uj)[p, uj+1p],

max{|y′′
0 − xi+1|, |y′′

n − xj |} ⩽ L(U, p) ⩽ L0.

It follows from (S2) that,

max{|xi+1 − yi+1|, |xj − yj |} ⩽ L(U, p) ⩽ L0.

Combining the previous estimations, we obtain |yi+1−yj | > 2τ−τ0. Note that 2τ−τ0 ⩾ τ0.

Proof of Proposition 5.16. — We put τ2 = 2τ1 − τ0. Let w1, w2 ∈ F(U) be two τ2-
shortening-free words such that w1w2 ∈ K. Assume for a contradiction that w1w2 is
not the identity as an element of G. According to Greendlinger’s Lemma (Lemma 2.33),
there exist (H,Y ) ∈ Q such that if y0 and y2 are respective projections of p and w1w2p

on Y , then
|y0 − y2| > T (H,X) − 2π sinh ρ− 23δ.

By definition, T (H,X) ⩾ T (Q, X). By hypothesis

T (Q, X) ⩾ 100π sinh ρ, and δ ⩽ δ0.

Therefore,
|y0 − y2| > eρ − 1

2 − 23δ0.
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The choice of ρ now implies that

|y0 − y2| > 4τ1

Let y1 be a projection of w1p on Y . Note that w−1
1 y1 and w−1

1 y2 are respective projections
of p and w2p on w−1

1 Y . Also, (w−1
1 Hw1, w

−1
1 Y ) ∈ Q. Since w1 and w2 are τ2-shortening-

free words, it follows from Lemma 5.17 that

max {|y0 − y1|, |y1 − y2|} < 2τ1.

By the triangle inequality,

|y0 − y2| ⩽ |y0 − y1| + |y1 − y2| ⩽ 4τ1.

Contradiction. Hence w1w2 = 1.

6. Growth in small cancellation groups

The goal of this section is to prove Theorem 1.2. We start with the following lemma.

Lemma 6.1. — Let a ⩾ 0, b ⩾ a. Let G be a group acting acylindrically on a δ-hyperbolic
space X. Let U ⊂ G be a finite symmetric subset containing the identity such that
L(U) ⩽ b. Let Γ = ⟨U⟩. One of the following holds.

(i) Γ is elliptic.

(ii) There exist n ⩾ 1 depending on U such that

a < L(Un) ⩽ 2b.

Proof. — Assume that Γ is not elliptic. Since the action of G on X is acylindrical, there
exists a loxodromic element g ∈ Γ (Lemma 2.22).

Claim 6.2. — There exists M0 ⩾ 1 depending on U such that for every M ⩾M0,

L(UM ) > a.

Proof. — According to Lemma 2.13, the global injectivity radius T(G,X) is distinct
from zero. Let m ⩾ a+δ

T(G,X) . Since g ∈ Γ and U is a symmetric generating set, there
exists M0 ⩾ 1 depending on U such that gm ∈ UM0 . Let M ⩾ M0. Let p ∈ X

almost-minimizing the ℓ∞-energy L(UM0). We have,

L(UM , p) ⩾ L(UM0 , p) ⩾ |gmp− p| ⩾ ∥gm∥∞ = m∥g∥∞ > a+ δ.

Hence L(UM ) > a. This proves our claim.
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It follows from the claim above that there exist a smallest number n ⩾ 1 depending
on U such that L(Un) > a. If n = 1, then we have L(U) ⩽ b by hypothesis. Therefore,
L(U) ⩽ 2b. If n ⩾ 2, then n ⩽ 2(n − 1). Since U contains the identity, Un ⊂ U2(n−1).
By the triangle inequality,

L(Un) ⩽ L(U2(n−1)) ⩽ 2 L(Un−1) ⩽ 2a ⩽ 2b.

Hypothesis for the remainder of this section. Recall that the constants of the Small
Cancellation Theorem (Lemma 2.27) are δ0, δ̄, ∆0, ρ0. We can choose δ0 arbitrarily small
(Remark 2.28). For convenience, we will assume

δ0 ⩽
π sinh 104δ̄

104 · 200 .

We define the first geometric small cancellation parameter:

λ ⩽
∆0

100π sinh ρ0
.

Let N > 0. Let c > 1 be the constant of Theorem 4.8 depending only on the acylindricity
parameters (δ0, N). We fix an auxiliar parameter that will be used to bound the ℓ∞-
energy:

L0 = c · (2π sinh 104δ̄ + δ0).

Let τ1 and τ2 be the constants of Proposition 5.16 depending on δ0, L0 and ∆0. Let

ρ ⩾ max
{
ρ0, log(2[4τ1 + 23δ0] + 1), 5 · 104δ̄

}
.

Let δ > 0 and κ ⩾ δ. We define the second geometric small cancellation parameter:

ε ⩾
100π sinh ρ

δ0
· κ
δ
.

Let G be a group acting (κ,N)-acylindrically on a δ-hyperbolic space X. Let Q be a
loxodromic moving family satisfying the geometric C ′′(λ, ε)-small cancellation condition
for the action of G on X. We define a rescaling parameter

σ = min
{
δ0
κ
,

∆0
∆(Q, X)

}
.

Remark 6.3. — Instead of working with the action of G on X, we will work with the
action of G on the rescaled space X .

The space X is σδ-hyperbolic and the action of G on X is (σκ,N)-acylindrical. Note
that

σδ ⩽ σκ ⩽ δ0,
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where the first inequality comes from the hypothesis κ ⩾ δ. In particular, the action of
G on X is (δ0, N)-acylindrical for the hyperbolicity constant σδ. Besides, we have

∆(Q,X ) ⩽ σ∆(Q, X) ⩽ ∆0,

T(Q,X ) ⩾ σT(Q, X) ⩾ σmax
{
εδ,

∆(Q, X)
λ

}
⩾ 100π sinh ρ.

Note that the second equation is deduced after using the geometric C ′′(λ, ε)-small
cancellation condition. Therefore G, X and Q satisfy the hypothesis of the Small
Cancellation Theorem (Lemma 2.27). We denote K = ⟨⟨H | (H,Y ) ∈ Q⟩⟩ and Ḡ = G/K.
We denote by Ā the image of any set A ⊂ G under the natural projection π : G↠ Ḡ.

The following lemma is the core of the proof of our main theorem. It brings together
Theorem 4.8, Proposition 5.9 and Proposition 5.16.

Lemma 6.4. — There exist β ∈ (0, 1) depending only on N with the following property.
Let U ⊂ G be a finite symmetric subset containing the identity such that L(U) ⩽

π sinh 104δ̄. Let Γ = ⟨U⟩. If Γ is non-elementary for the action on X , then

ω(Ū) ⩾ βω(U)

Proof. — We put

β = sup
θ∈(0,1)

inf
{
θ ·

log 3
2

log (2c) , 1 − θ

}
· 1
c
.

Let U ⊂ G be a finite symmetric subset containing the identity such that L(U) ⩽

π sinh 104δ̄. Let Γ = ⟨U⟩ and assume that Γ is non-elementary for the action on X .
We are going to choose a power of U and apply Theorem 4.8 to that power for the
(δ0, N)-acylindrical action of G on the σδ-hyperbolic space X . By assumption, we have

104 · 200δ0 ⩽ π sinh 104δ̄.

Since Γ is non-elementary, it follows from Lemma 6.1 that there exists n ⩾ 1 depending
on U such that

(6.1) 104 · 200δ0 < L(Un) ⩽ 2π sinh 104δ̄.

Let Γ′ = ⟨Un⟩. Since U is symmetric and contains the identity, U ⊂ Un. Therefore
Γ = Γ′. The fact that Γ is non-elementary now implies that Γ′ is non-elementary. Let
p ∈ X be a point almost-minimizing the ℓ∞-energy L(Un). It follows from Theorem 4.8
that there exist a subset S ⊂ G such that

(i) S ⊂ U cn,

(ii) |S| ⩾ 1
c |Un|,

(iii) S is 200δ0-reduced at p.
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We are going to estimate ω(Ū). Let r ⩾ 1. Since U is symmetric and contains the
identity, (i) implies

BS(r) ⊂ U cnr.

Let F (τ2) be the set of τ2-shortening-free words associated to U and Q. We have

|Ū cnr| ⩾ |B̄S(r)| ⩾ |F̄ (τ0) ∩ B̄S(r)|.

Further,
L(S, p) ⩽ L(U cn, p) ⩽ cL(Un, p) ⩽ L0,

where the first inequality is (i) and the second one is the triangle inequality. The third
one is due to the upper bound of Equation 6.1, together with the fact that the point
p is almost-minimizing the ℓ∞-energy L(U). Hence we can apply Proposition 5.9 and
Proposition 5.16 to obtain, respectively

|F̄ (τ2) ∩ B̄S(r)| = |F (τ2) ∩BS(r)|, and |F (τ2) ∩BS(r)| ⩾
[1

2(2|S| − 1)
]r

.

Applying Fekete’s Subadditive Lemma,

|Un| ⩾ enω(U).

Together with (ii), this implies

2|S| − 1 ⩾ |S| ⩾ 1
c
enω(U).

Combining our estimations, we deduce

(6.2) |Ū cnr| ⩾ max
{[1

2(2|S| − 1)
]r

,

[ 1
2ce

nω(U)
]r}

.

We have,
ω(Ū) = lim sup

r→∞

1
cnr

log |Ū cnr|.

Let θ ∈ (0, 1). Consider the positive number

γ = log 2c
θω(U) .

▶ If n ⩽ γ, we use the first bound of Equation 6.2 to obtain

ω(Ū) ⩾ 1
cn

· log
[1

2(2|S| − 1)
]
.
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Since n ⩽ γ, we have 1
n ⩾ 1

γ . Further, |S| ⩾ 2. Consequently,

ω(Ū) ⩾ θ ·
log 3

2
log 2c · 1

c
· ω(U).

▶ If n ⩾ γ, we use the second bound of Equation 6.2 to obtain

ω(Ū) ⩾ 1
c

(
ω(U) − 1

n
log 2c

)
.

Since n ⩾ γ, we have 1
n ⩽ 1

γ . Consequently,

1
n

log 2c ⩽ θω(U).

Therefore,
ω(Ū) ⩾ (1 − θ) · 1

c
· ω(U).

Finally, combining the cases n ⩽ γ and n ⩾ γ, we obtain:

ω(Ū) ⩾ βω(U).

Theorem 6.5 (Theorem 1.2 (i)). — Let ξ > 0. If G has ξ-uniform uniform exponential
growth, then every geometric C ′′(λ, ε)-small cancellation quotient of G has ξ′-uniform
uniform exponential growth. The constant ξ′ depends only on ξ and N .

Proof. — Let ξ > 0. Assume that G has ξ-uniform uniform exponential growth. Let
Ū ⊂ Ḡ be a finite symmetric subset containing the identity and denote Γ̄ = ⟨Ū⟩. Recall
that V stands by the set of apices of the cone-off space Ẋρ(Q, X). There are two cases:

Case 1. There exist v̄ ∈ V̄ such that Ū is contained in Stab(v̄).
Let v ∈ V be a preimage of v̄. Let (H,Y ) ∈ Q such that v is the apex of the cone

Z(Y ). The natural projection π : G↠ Ḡ induces an isomorphism Stab(Y )/H ∼−→ Stab(v̄)
(Lemma 2.27 (iii)). Since the moving family Q is loxodromic, H has finite index in
Stab(Y ). Hence Γ̄ is finite, in particular virtually nilpotent.

Case 2. The set Ū is not contained in Stab(v̄), for every v̄ ∈ V̄ .
The quotient space X̄ρ is δ̄-hyperbolic (Lemma 2.27 (i)) and the action of Γ̄ on X̄ρ is

acylindrical (Lemma 2.35). Then Γ̄ falls exactly in one of the following three situations
(Lemma 2.22):

(a) Γ̄ is elliptic, or equivalently one (hence any) orbit of Γ̄ is bounded. Since the
set Ū is not contained in Stab(v̄), for every v̄ ∈ V̄ , there exists an elliptic subgroup
E ⊂ G for the action of G on X such that the natural projection π : G↠ Ḡ induces an
isomorphism E

∼−→ Γ̄ (Lemma 2.31). Since G has ξ-uniform uniform exponential growth,
the subgroup E is either virtually nilpotent or has ξ-uniform exponential growth. In
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combination with the isomorphism F
∼−→ Γ̄, we deduce that Γ̄ either is virtually nilpotent

or has ξ-uniform exponential growth.
(b) Γ̄ is loxodromic, or equivalently Γ̄ is virtually cyclic and contains a loxodromic

element. Then Γ̄ is virtually nilpotent.
(c) Γ̄ is non-elementary, or equivalently Γ̄ contains a free group F2 of rank 2 and

one (hence any) orbit of F2 is unbounded. There are two subcases:

(E1) Large energy: L(Ū) > 104δ̄.

Then ω(Ū) ⩾ 1
103 log 2 (Lemma 2.22 and Lemma 2.23). Note that here we do not

require any control over the parameters of the acylindrical action of Γ̄ on X̄ρ.

(E2) Small energy: L(Ū) ⩽ 104δ̄.

Since Ū is not contained in Stab(v̄), for every v̄ ∈ V̄ , and 104δ̄ ⩽ ρ/5, there exists a
pre-image U ⊂ G of Ū of energy L(U) ⩽ π sinh 104δ̄ (Lemma 2.32). Without loss of
generality, we may assume that U is symmetric and contains the identity. Since Γ̄ is
non-elementary for the action on X̄ρ, the subgroup Γ is non-elementary for the action
on X (Lemma 2.29). According to Lemma 6.4, there exists β ∈ (0, 1) depending on
N such that ω(Ū) ⩾ βω(U). Since G has ξ-uniform uniform exponential growth
and Γ is non-elementary, we have ω(U) ⩾ ξ. Therefore, ω(Ū) ⩾ βξ. This completes
the proof of our theorem.

Theorem 6.6 (Theorem 1.2 (ii)). — Let ξ > 0. If there exists a geometric C ′′(λ, ε)-small
cancellation quotient of G that has ξ-uniform uniform exponential growth, then G has
ξ′-uniform uniform exponential growth. The constant ξ′ depends only on ξ.

Proof. — Let ξ > 0. Assume that Ḡ has ξ-uniform uniform exponential growth. Let
U ⊂ G be a finite symmetric subset containing the identity and denote Γ = ⟨U⟩. Then Γ
falls exactly in one of the following three situations (Lemma 2.22):

(a) Γ is elliptic, or equivalently one (hence any) orbit of Γ is bounded. The projection
π : G ↠ Ḡ induces an isomorphism Γ ∼−→ Γ̄ (Lemma 2.30). Since Ḡ has ξ-uniform
uniform exponential growth, the subgroup Γ̄ is either virtually nilpotent or has ξ-uniform
exponential growth. In combination with the isomorphism Γ ∼−→ Γ̄, we deduce that Γ is
either virtually nilpotent or has ξ-uniform exponential growth.

(b) Γ is loxodromic, or equivalently Γ is virtually cyclic and contains a loxodromic
element. Then Γ is virtually nilpotent.

(c) Γ is non-elementary, or equivalently Γ contains a free group F2 of rank 2 and
one (hence any) orbit of F2 is unbounded. There are two subcases:

(E1) Large energy: L(U) > 104δ0.

Then ω(U) ⩾ 1
103 log 2 (Lemma 2.22 and Lemma 2.23). Note that here we do not

require any control over the parameters of the acylindrical action of Γ on X .
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(E2) Small energy: L(U) ⩽ 104δ0.

By definition, ω(U) ⩾ ω(Ū). Since Γ is non-elementary for its action on X , we have
ω(U) > 0. Since 104δ0 ⩽ π sinh 104δ̄, it follows from Lemma 6.4 that ω(Ū) > 0. In
particular Γ̄ is not virtually nilpotent. Since Ḡ has ξ-uniform uniform exponential
growth, we deduce that ω(Ū) ⩾ ξ. Therefore, ω(U) ⩾ ξ.
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