
GROWTH OF QUASI-CONVEX SUBGROUPS
IN GROUPS WITH A CONSTRICTING ELEMENT

by Xabier LEGASPI

20th June 2023

Abstract. — Given a group G acting by isometries on a metric space
X, we consider a preferred collection of paths of the space X, a path system,
and study the spectrum of relative exponential growth rates and quotient
exponential growth rates of the infinite index subgroups of G that are quasi-
convex with respect to this path system. If G contains a constricting element
with respect to the same path system, we are able to determine when the
growth rates of the first kind are strictly smaller than the growth rate of G,
and when the growth rates of the second kind coincide with the growth rate
of G. Examples of applications include relatively hyperbolic groups, CAT(0)
groups and hierarchically hyperbolic groups containing a Morse element.
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1. Introduction

The action of a group G on a metric space X is called proper if for every r ⩾ 0,
and for every x ∈ X, the number of elements u ∈ G moving x at distance at most r is
finite. Let G be a group acting properly by isometries on a metric space X. The relative
exponential growth rate of the action of a subset U ⊂ G on X is the number

ω(U,X) = lim sup
r→∞

1
r

log |{u ∈ U : |uo− o| ⩽ r }|,

whose value is independent of the point o ∈ X. Let H be a subgroup of G. Let HL and
HR be respectively minimal left and right transversals of H at o, i.e., such that for every
u ∈ HL and v ∈ HR,

|uo− o| = inf
h∈H

|uho− o|, and |vo− o| = inf
h∈H

|hvo− o|.

In this article we study the numbers

ω(H) := ω(H,X), ω(G/H) := ω(HL, X), and ω(H\G) := ω(HR, X).

The values of ω(G/H) and ω(H\G) do not depend on the choice of the minimal transversal.
Consider the following general problem. When do G and H determine a solution to to
the system of equations below? 

ω(H) < ω(G),

ω(G/H) = ω(G),

ω(H\G) = ω(G).

We see from the definitions that

ω(H/G) = ω(H\G), and 0 ⩽ max {ω(H), ω(G/H)} ⩽ ω(G).

In the extreme case in which H has finite index in G, one can easily prove thatω(H) = ω(G),

ω(G/H) = 0.
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In general, it is a hard problem to obtain precise estimations of relative exponential
growth rates of infinite index subgroups. However, it is known, [2, 18, 22], that if G is
a non-virtually cyclic group acting geometrically on a hyperbolic space X and H is an
infinite index quasi-convex subgroup of G, thenω(H) < ω(G),

ω(G/H) = ω(G).

The arguments of [2, 18] are based on automatic structures and regular languages, with
influence of the works of J. Cannon [12, 13]. This fact also influenced other authors
that partially extended the hyperbolic case result, [16]. In Chapter 1 we go beyond the
hyperbolic case and we obtain two main results (Theorem 1.8 and Theorem 1.13) with
elementary proofs that do not require the theory of regular languages and automata.
We will be interested in groups acting properly on metric spaces conditioned by a very
general notion of “non-positive curvature” introduced by A. Sisto in [36] — containing a
constricting element with respect to a path system — while the infinite index subgroups
object of our study will satisfy a very general notion of “convex cocompactness” —
quasi-convexity with respect to a path system.

The remaining of this section is structured as follows. First of all, we will mention
two applications. Later we will give an informal explanation of our general setting as
the result of a natural generalisation of these applications. We expect that this will be
enough to understand our main theorems stated right after that. We will give another
application at the end.

Groups acting properly with a strongly contracting element. Members of this
class contain elements that “behave like” a loxodromic isometry in a hyperbolic space –
in a strong sense. Let δ ⩾ 0. A subset A of X is δ-strongly contracting if the diameter of
the nearest-point projection on A of any metric ball of X not intersecting A is less than δ.
An element g of G is δ-strongly contracting if it has infinite order and there exists an orbit
of the cyclic subgroup generated by g that is δ-strongly contracting. In his seminal paper
M. Gromov introduced the concept of δ-hyperbolic space, [23]. He observed that most of
the large scale features of negative curvature can be described in terms of thin triangles.
Nowadays, there are plenty of reformulations of the δ-hyperbolicity. In particular, H.
Masur and Y. Minsky gave one by describing geodesics in terms of strong contraction:

Example 1.1. — A geodesic metric space X is hyperbolic if and only if there exists δ ⩾ 0
such that any geodesic segment of X is δ-strongly contracting, [29, Theorem 2.3].

The following are some subclasses of groups acting properly with a strongly contracting
element:

(i) H = “G is a group acting properly with a loxodromic element on a hyperbolic
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space X.” In H, an element is loxodromic if and only if it is strongly contracting.
See [15].

(ii) RH = “G is a relatively hyperbolic group acting with a hyperbolic element on
a locally finite Cayley graph X of G.” In RH, hyperbolic elements are strongly
contracting. See [31, Corollary 1.7] and [35, Theorem 2.14].

(iii) CAT0 = “G is a group acting properly with a rank-one element on a proper
CAT(0) space X.” In CAT0, rank-one elements are strongly contracting. See
[10, Theorem 5.4] and [14].

(iv) ModT = “G is the mapping class group of an orientable surface of genus g and p

marked points of complexity 3g+p− 4 > 0 acting on its Teichmüller space endowed
with the Teichmüller metric.” In ModT, pseudo-Anosov elements are strongly
contracting. See [30] and [29, Proposition 4.6].

(v) GSC = “G is an infinite graphical small cancellation group associated to a Gr′(1/6)-
labeled graph with finite components labeled by a finite set S, acting on the Cayley
graph X of G with respect to S.” In GSC, loxodromic WPD elements for the
action of G on the hyperbolic coned-off Cayley graph constructed by D. Gruber
and A. Sisto in [24] are strongly contracting. See [4, Theorem 5.1].

(vi) Gar = “G is the quotient of a ∆-pure Garside group of finite type by its center,
acting with a Morse element on the Cayley graph X of G with respect to the
Garside generating set.” In Gar, Morse elements are strongly contracting. See
[11, Theorem 5.5].

(vii) Inj = “G is a group acting properly with a Morse element on an injective metric
space X.” In Inj, an element is Morse if and only if it is strongly contracting. See
[37].

An appropriate notion of convex cocompactness in this setting is just the usual
quasi-convexity. Let η ⩾ 0. A subset Y of X is η-quasi-convex if any geodesic of X
with endpoints in Y is contained in the η-neighbourhood of Y . A subgroup H of G is
η-quasi-convex if there exists an orbit of H that is η-quasi-convex.

Our theorem below generalises [39, Theorem 4.8] and [18, Theorems 1.1 and 1.3]:

Theorem 1.2. — If G is a non-virtually cyclic group acting properly with a strongly
contracting element on a geodesic metric space X, and H is an infinite index quasi-convex
subgroup of G, then ω(H) < ω(G),

ω(G/H) = ω(G).
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Hierarchically hyperbolic groups. Let Mod(Σg,p) be the mapping class group of an
orientable surface Σg,p of genus g and p marked points of complexity 3g + p− 4 > 0. We
would like to apply Theorem 1.2 to Mod(Σg,p) with respect to the word metric. However,
we do not know whether Mod(Σg,p) acts with a strongly contracting element on any of
its locally finite Cayley graphs or not. Maybe the candidates that come to mind are
the pseudo-Anosov elements, and evidence suggests that not all of them are strongly
contracting: K. Rafi and Y. Verberne constructed a generating set U of Mod(Σ0,5) and a
pseudo-Anosov element which is not strongly contracting for the action of Mod(Σ0,5) on
the Cayley graph of Mod(Σ0,5) with respect to U , [32, Theorem 1.3]. We were able to
avoid this setback by looking into the class of hierarchically hyperbolic groups, introduced
by J. Behrstock, M. Hagen and A.Sisto in [7, 8] as a generalisation of the Masur and
Minsky hierarchy machinery of mapping class groups. Below we provide some examples
of hierarchically hyperbolic groups. The reader should note that the metric space where
they act with a hierarchically hyperbolic structure is any of their locally finite Cayley
graphs:

(i) Mapping class groups of finite type surfaces, [8].

(ii) Right-angled Artin groups, [7].

(iii) Right-angled Coxeter groups, [7].

(iv) Fundamental groups of 3-manifolds without NIL or SOL components, [8].

Now consider the following notion of convex cocompactness. A subset Y of X is
Morse if for every κ ⩾ 1, λ ⩾ 0, there exists σ ⩾ 0 such that any (κ, l)-quasi-geodesic of
X with endpoints in Y is contained in the σ-neighbourhood of Y . A subgroup H of G is
Morse if there exists an orbit of H that is Morse. An element g of G is Morse if it has
infinite order and the cyclic subgroup generated by g is Morse.

We have obtained the next result, partially generalising [16, Theorem A]:

Theorem 1.3. — If G is a non-virtually cyclic hierarchically hyperbolic group acting on
a locally finite Cayley graph X of G with a Morse element, and H is an infinite index
Morse subgroup of G, then ω(H) < ω(G),

ω(G/H) = ω(G).

We know that pseudo-Anosov elements of mapping class groups are Morse with respect
to any word metric, [6], and that the infinite index Morse subgroups of the mapping
class group are precisely the convex cocompact subgroups in the sense of mapping class
groups, [27, Theorem A], which allows us to obtain a more concrete statement:
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Corollary 1.4. — If G is the mapping class group of a surface of genus g and p marked
points such that 3g + p− 4 > 0 acting on a locally finite Cayley graph X of G, and H is
a convex cocompact subgroup of G, thenω(H) < ω(G),

ω(G/H) = ω(G).

Remark 1.5. — Under the hypothesis of the previous corollary, we remark that the
inequality ω(H) < ω(G) was also obtained independently in [16, Corollary C].

Main results. Now that we gave the big picture, we will give a technical definition that
encapsulates the classes discussed so far. In order to do so, we make two observations. On
the one hand, the strong contraction property can be reformulated in the following way.
A subset A of X is strongly contracting if and only if any geodesic segment of X joining
any pair of points x, y ∈ X whose projections p and q via a nearest-point projection are
far away passes next to p and q, [5, Proposition 2.9]. On the other hand, mapping class
groups – or more generally, hierarchically hyperbolic groups – come with hierarchy paths,
a family of special quasi-geodesics encoding substantial information about the geometry
of the space and easier to work with than the set of all (quasi-)geodesics. For these
reasons, in order to define very general notions of non-positive curvature and convex
cocompactness, we will be considering path systems, introduced by A. Sisto in [36]:

Definition 1.6 (Path system group). — Let µ ⩾ 1, ν ⩾ 0. A (µ, ν)-path system group
(G,X,P) is a group G acting properly on a geodesic metric space X together with a
G-invariant collection P of paths of X satisfying:

(PS1) P is closed under taking subpaths.

(PS2) For every x, y ∈ X, there exists γ ∈ P joining x to y.

(PS3) Every element of P is a (µ, ν)-quasi-geodesic.

We refer to P as (µ, ν)-path system.

We fix µ ⩾ 1, ν ⩾ 0 and a (µ, ν)-path system group (G,X,P) for the following
definitions. Let δ ⩾ 0. We say that a subset A of X is δ-constricting if there exist a
coarse nearest-point projection of X on A with the property that any γ ∈ P joining any
two pair of points x, y ∈ X whose projections p and q are δ-far away passes through the
δ-neighbourhoods of p and q (Definition 2.8). An element g of G is δ-constricting if it
has infinite order and there exists a δ-constricting orbit of the cyclic subgroup generated
by g. Let η ⩾ 0. A subgroup Y of X is η-quasi-convex if any γ ∈ P with endpoints
in Y is contained in the η-neighbourhood of Y (Definition 2.7). A subgroup H of G is
η-quasi-convex if there exist an η-quasi-convex orbit of H.
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Example 1.7. — (i) Assume that the metric space X is geodesic. An infinite order
element of G is strongly contracting if and only if it is constricting with respect to
the set of all the geodesic segments of X, [5, Proposition 2.9].

(ii) Assume that the group G is hierarchically hyperbolic. An infinite order element
g of G is Morse if and only if for every κ ⩾ 1, there exists δ ⩾ 0 such that g is δ-
constricting with respect to the set of all the κ-hierarchy paths. See [33, Theorem E]
and [9, Lemma 1.27].

Finally, we state the main results of Chapter 1. Theorem 1.2 and Theorem 1.3 are
special cases. Our first result generalises work of W. Yang, [39, Theorem 4.8], and F.
Dahmani - D. Futer - D. Wise, [18, Theorems 1.1 and 1.3]. The Poincaré series PU (s)
based at o ∈ X of a subset U of G is defined as

∀ s ⩾ 0, PU (s) =
∑
u∈U

e−s|uo−o|

and modifies its behaviour at the relative exponential growth rate ω(U,X): the series
diverges if s < ω(U,X) and converges if s > ω(U,X). At s = ω(U,X) the series can
converge or diverge depending on the nature of U . This behaviour is independent of
the point o ∈ X. We say that the action of U on X is divergent if PU (s) diverges at
s = ω(U,X).

Theorem 1.8 (Theorem 8.2). — Let (G,X,P) be a path system group. Assume that G
contains a constricting element. Let H be an infinite index subgroup of G satisfying the
following:

(i) ω(H) < ∞.

(ii) The action of H on X is divergent.

(iii) H is quasi-convex.

Then ω(H) < ω(G).

Remark 1.9. — Under the hypothesis of Theorem 1.8, one may ask if there is a growth
gap, i.e, if

sup
H
ω(H) < ω(G),

where the supremum is taken among the infinite index subgroups H of G satisfying
(i), (ii) and (iii). In our context, the answer is yes: there is a growth gap when G is a
hyperbolic group with Kazhdan’s Property (T), [17, Theorem 1.2]. However, one can
show that there is no growth gap among free groups, [18, Theorem 9.4], or fundamental
groups of compact special cube complexes, [28, Theorem 1.5]. The answer to our context
could be different if one studied semigroups instead of subgroups, [39, Theorem A].
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In [23, 5.3.C], M. Gromov stated that in a torsion-free hyperbolic group G, any
infinite index quasi-convex subgroup H is a free factor of a larger quasi-convex subgroup.
Gromov’s ideas were later developed by G. N. Arzhantseva in [3, Theorem 1]. More
recently, J. Russell, D. Spriano and H. C. Tran generalised her result to the context
of groups with the “Morse local-to-global property”, [34, Corollary 3.5]. Further, the
problem seems connected to the “PNaive property” studied by C. Abbott and F. Dahmani
in the context of groups acting acylindrically on a hyperbolic space, [1]. In our context,
we have obtained the following, in which there is no torsion-free assumption. We will see
that Theorem 1.8 is, in part, a consequence of this result:

Theorem 1.10 (Proposition 8.3). — Let (G,X,P) be a path system group. Assume that
G contains a constricting element g0. Let H be an infinite index quasi-convex subgroup
of G. Then, there exist an element g ∈ G conjugate to a large power of g0 and a finite
extension E of ⟨g⟩ such that the intersection H ∩ E is finite and the natural morphism
H ∗H∩E ⟨g,H ∩ E⟩ → G is injective.

According to Proposition 2.5 (6), the subgroup generated by a constricting element
is always Morse, and in particular quasi-convex. Hence Theorem 1.10, for the choice of
H = ⟨g0⟩, implies the following weak Tits alternative:

Corollary 1.11. — Let (G,X,P) be a path system group. Assume that G contains a
constricting element. Then, either G is virtually cyclic or contains a free subgroup of
rank two.

Remark 1.12. — To the best of our knowledge, the previous corollary has not been
recorded for the class of groups acting properly with a strongly contracting element. The
Tits alternative is known for hierarchically hyperbolic groups [21, Theorem 9.15], which
is a much stronger result.

In our second result we generalise work of Y. Antolín, [2, Theorem 3], and R. Gitik -
E. Rips, [22, Theorem 2]:

Theorem 1.13. — Let (G,X,P) be a path system group. Assume that G contains a
constricting element. Let H be an infinite index quasi-convex subgroup of G. Then

ω(G/H) = ω(G).

Note that the study of [22, Theorem 2] concerns double cosets in the hyperbolic group
case. We remark that in [20, VII D 39], P. de la Harpe says about the growth of double
cosets: “this theme has not received yet too much attention, but probably should”. In
our context, for sake of simplicity, we decided to study single cosets instead, but one
could possibly extend our result. Further, we remark that our result is connected to
the study of I. Kapovich on the hyperbolicity and amenability of the Schreier graphs of
infinite index quasi-convex subgroups of hyperbolic groups, [25, 26]. There’s also work of
A. Vonseel concerning the number of ends, [38].
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Remark 1.14. — (i) Our main results Theorem 1.8 and Theorem 1.13 hold in the case
ω(G) = ∞. For instance, if G is a group acting properly on a metric space (X, | · |),
then we can define a new metric | · |′ on X by

∀x, y ∈ X, |x− y|′ = e−|x−y| · |x− y|.

The metric distorts the growth of the orbit of G exponentially. If ω(G) > 0 with
respect to | · |, then ω(G) = ∞ with respect to | · |′.

(ii) If G is a group acting geometrically on a metric space X, then ω(G) < ∞.

Now we are going to record a joint corollary to Theorem 1.8 and Theorem 1.13.
In general, it is not easy to decide whether the action of a groups is divergent or not.
However, the following is a well-known consequence of Fekete’s Subadditive Lemma:

Lemma 1.15 ([19, Proposition 4.1 (1)]). — Let G be a group acting properly on a
geodesic metric space X. Let o ∈ X. Let H ⩽ G be a quasi-convex subgroup (in the
classical sense). Then

ω(H) = inf
n⩾1

1
n

log |{h ∈ H : |ho− o| ⩽ n }| = lim
n→∞

1
n

log |{h ∈ H : |ho− o| ⩽ n }|.

In particular ω(H) < ∞. If in addition H is infinite, then the action of H on X is
divergent.

Combining Lemma 1.15 with Corollary 1.11, we obtain:

Corollary 1.16. — Let (G,X,P) be a path system group. Assume that G is non-
virtually cyclic and contains a constricting element.

(i) If P is the set of all the geodesic segments of X, then for every infinite index
quasi-convex subgroup H of G, we haveω(H) < ω(G),

ω(G/H) = ω(G).

(ii) For every infinite index Morse subgroup H of G, we have

ω(H) < ω(G),

ω(G/H) = ω(G).

Remark 1.17. — One can prove that the class of groups acting properly with a con-
stricting element with respect to a path system is invariant under equivariant quasi-
isometries. However, strongly contracting elements are not preserved under equivariant
quasi-isometries, [4, Theorem 4.19]. In particular, Corollary 1.16 applies for instance to
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the action on a locally finite Cayley graph of any group acting geometrically on a CAT(0)
space with a rank-one element.

Remark 1.18. — The proofs of Theorem 1.2, Theorem 1.3 and Corollary 1.4 now follow
from our main results (Theorem 1.8 and Theorem 1.13) in view of Example 1.7 and
Remark 1.14 (ii).

Hierarchical quasi-convexity. In hierarchically hyperbolic groups there is a notion of
convex cocompactness more natural than Morseness. Let G be a hierarchically hyperbolic
group. A subgroup H of G is hierarchically quasi-convex if and only if for every κ ⩾ 1,
there exists η ⩾ 0 such that H is η-quasi-convex with respect to the set of all the
κ-hierarchy paths of G, [33, Proposition 5.7]. Finally, in view of Remark 1.14 (ii) and
Example 1.7 (ii), we deduce two more applications from Theorem 1.8 and Theorem 1.13:

Theorem 1.19. — If G is a hierarchically hyperbolic group acting on a locally finite
Cayley graph X of G with a Morse element, and H is an infinite index subgroup of G
satisfying:

(i) the action of H on X is divergent,

(ii) H is hierarchically quasi-convex,

then ω(H) < ω(G).

Theorem 1.20. — If G is a hierarchically hyperbolic group acting on a locally finite
Cayley graph X of G with a Morse element, and H is an infinite index hierarchically
quasi-convex subgroup of G, then ω(G/H) = ω(G).

Outline of the paper. In section 2 we will introduce the definitions of path system
group, quasi-convex subgroup and constricting element. In section 3 we will explain
the two criteria that we will use to estimate the growth of quasi-convex subgroups.
The rest of the chapter is devoted to the development of our geometric framework so
that we can apply these criteria. In section 5 we will prove a version of the bounded
geodesic image property of hyperbolic spaces. In section 4 we will introduce the notion of
buffering sequence and we will give a version of Behrstock inequality. In section 6, given
an infinite index quasi-convex subgroup and a quasi-convex element, we will produce
another quasi-convex element whose orbit is “transversal” to the given subgroup. The
proofs of both of our main results (Theorem 1.8 and Theorem 1.13) share this argument.
In section 7 we will study the elementary closures of constricting elements apart from
some geometric separation properties. Finally, in section 8 we will prove our main results
(including Theorem 1.10) by constructing an appropriate buffering sequence for each
problem.
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2. Path system geometry

This section is devoted to present the notations and vocabulary of the main geometric
objects of this chapter. We formalise our notions of “convex cocompactness” and “non-
positive curvature”.

Metric geometry. Let X be a metric space. Given two points x, x′ ∈ X, we write
|x−x′| for the distance between them. The ball of X of center x ∈ X and radius r ⩾ 0 is

BX(x, r) = { y ∈ X : |x− y| ⩽ r }.

The distance between a point x ∈ X and a subset Y ⊂ X is

d(x, Y ) = inf { |x− y| : y ∈ Y }.

Let η ⩾ 0. The η-neighbourhood of a subset Y ⊂ X is

Y +η = {x ∈ X : d(x, Y ) ⩽ η }.

The distance between two subsets Y,Z ⊂ X is

d(Y,Z) = inf { |y − z| : y ∈ Y, z ∈ Z }.

The Hausdorff distance between two subsets Y,Z ⊂ X is

dHaus(Y, Z) = inf { ε ⩾ 0 : Y ⊂ Z+ε and Z ⊂ Y +ε }.

Path system spaces. Let X be a metric space. A path is a continuous map α : [a, b] →
X. The initial and terminal points of α are α(a) and α(b), respectively. They form
the endpoints of α. We will frequently identify a path and its image. A subpath of α
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is a restriction of α to a subinterval of [a, b]. The path α joins the point x ∈ X to the
point y ∈ X if α(a) = x and α(b) = y. Note that for every x, y ∈ α there may be more
than one subpath of α joining x to y, unless the points are given by the parametrisation
of α. The length of a path α is denoted by ℓ(α). Unless otherwise stated a path is a
rectifiable path parametrised by arc length. Let κ ⩾ 1, l ⩾ 0. A path α : [a, b] → X is a
(κ, l)-quasi-geodesic if for every t, t′ ∈ [a, b],

|α(t) − α(t′)| ⩽ |t− t′| ⩽ κ|α(t) − α(t′)| + l.

Note that that ℓ(α|[t,t′]) = |t− t′|. The following captures the idea of endowing a metric
space with a collection of preferred paths.

Definition 2.1 (Path system space). — Let µ ⩾ 1, ν ⩾ 0. A (µ, ν)-path system space
(X,P) is a metric space X together with a collection P of paths of X satisfying:

(PS1) P is closed under taking subpaths.

(PS2) For every x, y ∈ X, there exists γ ∈ P joining x to y.

(PS3) Every element of P is a (µ, ν)-quasi-geodesic.

We refer to P as (µ, ν)-path system.

We fix µ ⩾ 1, ν ⩾ 0 and a (µ, ν)-path system space (X,P).

Definition 2.2 (Quasi-convex subset). — Let η ⩾ 0. A subset Y ⊂ X is η-quasi-convex
if every γ ∈ P with endpoints in Y is contained in the η-neighbourhood of Y .

Definition 2.3 (Constricting subset). — Let δ ⩾ 0. A subset A ⊂ X is δ-constricting if
there exists a map πA : X → A satisfying:

(CS1) Coarse retraction.

For every x ∈ A, we have |x− πA(x)| ⩽ δ.

(CS2) Constriction.

For every x, y ∈ X and for every γ ∈ P joining x to y, if we have |πA(x)−πA(y)| > δ,
then γ ∩BX(πA(x), δ) ̸= ∅ and γ ∩BX(πA(y), δ) ̸= ∅.

We refer to πA : X → A as δ-constricting map.

Notation 2.4. — Let πA : X → A be a map between X and a subset A ⊂ X. For every
x, y ∈ X, we denote |x − y|A = |πA(x) − πA(y)|. For every subset Y ⊂ X, we denote
diamA(Y ) = diam(πA(Y )). For every x ∈ X and for every pair of subsets Y,Z ⊂ X, we
denote dA(x, Y ) = d(πA(x), πA(Y )) and dA(Y, Z) = d(πA(Y ), πA(Z)). Note that dA may
not be a distance over the collection of subsets of X: it may not satisfy the triangle
inequality. We will keep this notation for the rest of the paper.
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x

πA(x) πA(y)

y

γ

A
⩽ δ

> δ

⩽ δ

Figure 1: The constriction property.

The following are some standard properties:

Proposition 2.5. — For every δ ⩾ 0, there exist a constant θ ⩾ 0 and a pair of maps,
σ : R⩾1 × R⩾0 → R⩾0 and ζ : R⩾0 → R⩾0, such that any δ-constricting map πA : X → A

satisfies the following properties:

(1) Coarse nearest-point projection.

For every x ∈ X, we have |x− πA(x)| ⩽ µd(x,A) + θ.

(2) Coarse equivariance.

Let H be a group acting by isometries on X such that A and P are H-invariant.
Then for every h ∈ H and for every x ∈ X, we have |πA(hx) − hπA(x)| ⩽ θ.

(3) Coarse Lipschitz map.

For every x, y ∈ X, we have |x− y|A ⩽ µ|x− y| + θ.

(4) Intersection–image.

For every γ ∈ P, we have | diam(A+δ ∩ γ) − diamA(γ)| ⩽ θ.

(5) Behrstock inequality.

Let πB : X → B be a δ-constricting map. Then for every x ∈ X, we have

min {dA(x,B), dB(x,A)} ⩽ θ.

(6) Morseness.

Let κ ⩾ 1, l ⩾ 0. Let α be a (κ, l)-quasi-geodesic of X with endpoints in A. Then
α ⊂ A+σ(κ,l).

13
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(7) Coarse invariance.

Let ε ⩾ 0. Let B ⊂ X be a subset such that dHaus(A,B) ⩽ ε. Then B is
ζ(ε)-constricting.

Proof. — We give some references. For (1), (3) and (4), see [36, Lemma 2.4]. For (5), see
[36, Lemma 2.5]. For (6), see [36, Lemma 2.8 (1)]. We leave the proof of the properties
(2) and (7) as an exercise.

Path system groups. Let G be a group acting by isometries on a metric space X.
The quasi-stabilizer StabG(x, r) of x ∈ X of radius r ⩾ 0 is defined as

StabG(x, r) = {g ∈ G : |x− gx| ⩽ r}.

The action of G on X is proper if for every x ∈ X and for every r ⩾ 0, we have
| StabG(x, r)| < ∞. Let η ⩾ 0. The action of G on X is η-cobounded if for every
x, x′ ∈ X, there exists g ∈ G such that |x− gx′| ⩽ η.

Definition 2.6 (Path system group). — Let µ ⩾ 1, ν ⩾ 0. A (µ, ν)-path system group
(G,X,P) is a group G acting properly on a metric space X together with a G-invariant
collection P of paths of X such that (X,P) is a (µ, ν)-path system space.

We fix µ ⩾ 1, ν ⩾ 0 and a (µ, ν)-path system group (G,X,P).

Definition 2.7 (Quasi-convex subgroup). — A subgroup H ⩽ G is η-quasi-convex if
there exists an H-invariant η-quasi-convex subset Y ⊂ X such that the action of H on Y
is η-cobounded. We will write (H,Y ) when we need to stress the η-quasi-convex subset
Y that H is preserving.

Definition 2.8 (Constricting element). — Let δ ⩾ 0. An element g ∈ G is δ-constricting
if the following holds:

(CE1) g has infinite order.

(CE2) There exists a ⟨g⟩-invariant δ-constricting subset A ⊂ X so that the action of ⟨g⟩
on A is δ-cobounded.

We will write (g,A) when we need to stress the δ-constricting subset A that ⟨g⟩ is
preserving.

Remark 2.9. — Note that Definition 2.7 and Definition 2.8 imply the corresponding
definitions of the introduction. The converse implication is also true for Definition 2.8,
but the argument requires Proposition 2.5 (7) Coarse invariance.
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3. Growth estimation criteria

In this section, we fix a group G acting properly on a metric space X and a subgroup
H ⩽ G. The goal is to establish simple criteria so that we can check if H is a solution to
the system of equations ω(H) < ω(G),

ω(G/H) = ω(G).

Our criterion to estimate the relative exponential growth rate is basically [19, Cri-
terion 2.4]. The statement that we actually need is more specific, so we will give a proof
for the convenience of the reader. Recall that the action of a subgroup H ⩽ G on X is
divergent if its Poincaré series PH(s) diverges at s = ω(H).

Proposition 3.1 ([19, Criterion 2.4]). — Assume that the following conditions are true:

(i) ω(H) < ∞.

(ii) The action of H on X is divergent.

(iii) There exist subgroups K ⩽ G and F ⩽ H ∩K so that F is a proper finite subgroup
of K and the natural homomorphism ϕ : H ∗F K → G is injective.

Then ω(H) < ω(G).

Remark 3.2. — In the proof below, note that the relative exponential growth rate makes
sense for any subset of G, as it does the notion of Poincaré series.

Proof. — Since the action of H on X is divergent, in particular H is infinite and hence
H −F is non-empty. Since F is a proper subgroup of K, there exists k ∈ K −F . Denote
by U the set of elements of H ∗F K that can be written as words that alternate elements
of H − F and k, always with an element of H − F at the beginning and with a k at the
end. The inequality ω(ϕ(U)) ⩽ ω(G) can be deduced from the definition. It is enough
to prove that there exists s0 ⩾ 0 such that ω(H) < s0 ⩽ ω(ϕ(U)). Let o ∈ X. Since
ω(H) < ∞, the interval (ω(H),∞) is non-empty. Since the action of H on X is divergent,
there exists s0 ∈ (ω(H),∞) such that

∑
h∈H−F e

−s0|o−hko| > 1; otherwise one obtains a
contradiction with the divergence of the action of H on X.

In order to obtain the inequality s0 ⩽ ω(ϕ(U)), it suffices to show that the Poincaré
series Pϕ(U)(s) =

∑
g∈ϕ(U) e

−s|o−go| diverges at s = s0. Since ϕ : H ∗F K → G is injective,
we have

Pϕ(U)(s) ⩾
∑
m⩾1

∑
h1,··· ,hm∈H−F

e−s|o−h1kh2k···hmko|.

By the triangle inequality, for every m ⩾ 1 and for every h1, · · · , hm ∈ H − F , we have
|o− h1kh2k · · ·hmko| ⩽

∑m
i=1 |o− hiko|. Thus,

∑
h1,··· ,hm∈H−F

e−s|o−h1kh2k···hmko| ⩾

 ∑
h∈H−F

e−s|o−hko|

m

.
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We see that PH(s0) = ∞ follows from the claim.

Our criterion to estimate the quotient exponential growth rate is the following:

Definition 3.3. — Let ϕ : G → G. We say that G is ϕ-coarsely G/H if there exist θ ⩾ 0
and x ∈ X satisfying the following conditions:

(CQ1) For every u, v ∈ G, if ϕ(u)H = ϕ(v)H, then |ϕ(u)x− ϕ(v)x| ⩽ θ.

(CQ2) For every u ∈ G, |ux− ϕ(u)x| ⩽ θ.

Proposition 3.4. — If there exist ϕ : G → G such that G is ϕ-coarsely G/H, then
ω(G) = ω(G/H).

Proof. — The inequality ω(G/H) ⩽ ω(G) can be deduced from the defintion. Assume
that there exist ϕ : G → G such that G is ϕ-coarsely G/H for x ∈ X and θ ⩾ 0.

Claim 3.5. — There exist κ ⩾ 1 such that for every r > 0,

| StabG(x, r)| ⩽ κ|p(StabG(x, r + θ))|.

Let κ = | StabG(x, 3θ)|. Let r > 0. Let p : G ↠ G/H be the natural projection.
Let q : G → G/H the map that sends u to ϕ(u)H. Note that the quasi-stabilizer
StabG(x, r) can be decomposed as the disjoint union of the sets q−1(q(u)) such that
q(u) ∈ q(StabG(x, r)). Hence,

| StabG(x, r)| ⩽
∑

q(u)∈q(StabG(x,r))
|q−1(q(u))|.

It suffices to estimate the size of q(StabG(x, r)) and the size of q−1(q(u)), for every u ∈ G.
First we prove that |q(StabG(x, r))| ⩽ |p(StabG(x, r + θ))|. Let u ∈ StabG(x, r). By the
triangle inequality,

|x− ϕ(u)x| ⩽ |x− ux| + |ux− ϕ(u)x|.

By the hypothesis (CQ2), we have |ux − ϕ(u)x| ⩽ θ. Hence |x − ϕ(u)x| ⩽ r + θ.
Consequently, q(StabG(x, r)) ⊂ p(StabG(x, r + θ)). Now we prove that for every u ∈ G,
we have |q−1(q(u))| ⩽ κ. Let u ∈ G. Since |uStabG(x, 3θ)| = | StabG(x, 3θ)| = κ, it is
enough to prove that u−1q−1(q(u)) ⊂ StabG(x, 3θ). Let v ∈ q−1(q(u)). By the triangle
inequality,

|x− u−1vx| = |ux− vx| ⩽ |ux− ϕ(u)x| + |ϕ(u)x− ϕ(v)x| + |ϕ(v)x− vx|.

Since q(u) = q(v), we have that ϕ(u)H = ϕ(v)H. It follows from the hypothesis (CQ1)
that |ϕ(u)x − ϕ(v)x| ⩽ θ. By the hypothesis (CQ2), we have max{|ux − ϕ(u)x|, |vx −
ϕ(v)x|} ⩽ θ. Thus, |x− u−1vx| ⩽ 3θ. This proves the claim.

Consequently,
ω(G) ⩽ lim sup

r→∞

1
r

log |p(StabG(x, r + θ))|.
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Finally, observe that

lim sup
r→∞

1
r

log |p(StabG(x, r + θ))| = lim sup
r→∞

r + θ

r

1
r + θ

log |p(StabG(x, r + θ))|.

Hence ω(G) ⩽ ω(G/H).

4. Buffering sequences

In this section, we fix constants µ ⩾ 1, ν ⩾ 0 and a (µ, ν)-path system space (X,P).
Despite the fact that our space X does not carry any global geometric condition, we
still can obtain some control through constricting subsets. We could ignore the “wild
regions” if, for instance, we were able to “jump” from one constricting subset to another.
The buffering sequences below encapsulate this idea. In fact, the proofs of our main
results consist essentially in building up some particular buffering sequences. W. Yang
had already introduced this concept for piece-wise geodesics in [39].

Definition 4.1. — Let δ, ε, L ⩾ 0. Let A be a collection of subsets of X. A finite
sequence of subsets Y0, A1, Y1, · · · , An, Yn ⊂ X where Y0 and Yn are the only possible
empty sets is (δ, ε, L)-buffering on A if for every i ∈ J1, nK the set Ai belongs to A and
there exists a δ-constricting map πAi : X → Ai with the following properties whenever Yi

and Yi−1 are non-empty:

(BS1) max{diamAi(Ai+1),diamAi+1(Ai)} ⩽ ε if i ̸= n.

(BS2) max{diamAi(Yi−1), diamAi(Yi)} ⩽ ε.

(BS3) max{d(Ai, Yi−1), d(Ai, Yi)} ⩽ ε.

(BS4) dAi(Yi−1, Yi) ⩾ L.

What makes buffering sequences remarkable is that they satisfy a variant of Behrstock
inequality. We will find a direct application of the following inequality later in the study
of the quotient exponential growth rates:

Proposition 4.2. — For every δ, ε ⩾ 0, there exists θ ⩾ 0 with the following property.
Let A, Y,B ⊂ X be a (δ, ε, 0)-buffering sequence on {A,B}. Then for every x ∈ X,

min {dA(x, Y ), dB(x, Y )} ⩽ θ.

Proof. — Let δ, ε ⩾ 0. Let θ0 = θ0(δ) ⩾ 0 be the constant of Proposition 2.5. Let
θ > θ0 + 1. Its exact value will be precised below. Let A, Y,B ⊂ X be a (δ, ε, 0)-buffering
sequence on {A,B}. Let x ∈ X. By symmetry, it suffices to show that if dA(x, Y ) > θ,
then dB(x, Y ) ⩽ θ. Assume that dA(x, Y ) > θ. Let a ∈ A such that |x−a|B ⩽ dB(x,A)+1.
Let b ∈ B. Let y ∈ Y . By (BS3), we have max{d(A, Y ), d(B, Y )} ⩽ ε; hence there exist
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Y1

Y2

Y3

A1 A2 A3 A4

≥ L ≥ L ≥ L ≥ L

Figure 2: An example of a buffering sequence in the Poincaré
disk model. In this example, the sets Ai are subpaths of
length ⩾ L of a given bi-infinite geodesic α. Each set Yi is
the collection of geodesics that are orthogonal to the geodesic
segment of α that is between Ai and Ai+1. In particular,
the sets Yi are quasi-convex. For more intuition, one could
interpret this picture on a tree.
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p ∈ A+ε+1 ∩ Y and q ∈ B+ε+1 ∩ Y . It follows from the definition of buffering sequence
that

max {|b− πB(q)|A, |q − p|A, |a− πA(p)|B, |p− y|B} ⩽ ε.

Applying together Proposition 2.5 (1) Coarse nearest-point projection and (3) Coarse
Lipschitz map, we obtain

max{|πB(q) − q|A, |πA(p) − p|B} ⩽ µ2(ε+ 1) + µθ0 + θ0.

Claim 4.3. — dA(x,B) > θ0

By the triangle inequality,

|x− b|A ⩾ |x− p|A − |b− πB(q)|A − |πB(q) − q|A − |q − p|A.

Moreover, |x− p|A ⩾ dA(x, Y ). Since the element b is arbitrary and we have dA(x, Y ) >
θ0 + 1, we obtain dA(x,B) > θ0. This proves the claim.

Finally, we are going to estimate dB(x, Y ). By the triangle inequality,

|x− y|B ⩽ |x− a|B + |a− πA(p)|B + |πA(p) − p|B + |p− y|B.

Since dA(x,B) > θ0, it follows from Proposition 2.5 (5) Behrstock inequality and the
definition of a that |x − a|B ⩽ θ0 + 1. Since the element y is arbitrary, we obtain
dB(x, Y ) ⩽ θ for θ = 2θ0 + 1 + 2ε+ µ2(ε+ 1) + µθ0.

The corollary below will be applied to the study of the relative exponential growth
rates:

Corollary 4.4. — For every δ, ε, θ ⩾ 0 there exists L ⩾ 0 with the following property.
Let Y0, A1, Y1, · · · , An, Yn ⊂ X be an (δ, ε, L)-buffering sequence on {Ai}. Then for every
i ∈ J1, nK,

dAi(Y0, Yi) > θ.

Proof. — Let δ, ε, θ ⩾ 0. Let θ0 = θ0(δ, ε) ⩾ 0 be the constant of Proposition 4.2. We
put L = θ + θ0 + 1. Let y0 ∈ Y0. Let i ∈ J1, nK.

Claim 4.5. — dAi(y0, Yi) ⩾ dAi(Yi−1, Yi) − dAi(y0, Yi−1).

Let yi−1 ∈ Yi−1 and yi ∈ Yi. By the triangle inequality,

|y0 − yi|Ai ⩾ |yi−1 − yi|Ai − |y0 − yi−1|Ai .

Note that |yi−1 − yi|Ai ⩾ dAi(Yi−1, Yi). Since the elements yi−1, yi are arbitrary, this
proves the claim.

Finally, we prove by induction on i ∈ J1, nK that, dAi(Y0, Yi) > θ. If i = 1,
then dA1(Y0, Y1) > θ follows from (BS4), since L > θ. Assume that i ∈ J1, n − 1K

19



Xabier LEGASPI

and dAi(Y0, Yi) > θ. Then dAi(y0, Yi) > θ0. It follows from Proposition 4.2 that
dAi+1(y0, Yi) ⩽ θ0. By (BS4), dAi+1(Yi, Yi+1) ⩾ L. Applying the previous claim, we
obtain dAi+1(y0, Yi+1) > θ. Since the element y0 is arbitrary, dAi+1(Y0, Yi+1) > θ. This
concludes the inductive step.

5. Quasi-convexity in the intersection–image property

In this section, we fix constants µ ⩾ 1, ν ⩾ 0 and a (µ, ν)-path system space (X,P).
In this section, we prove a variant of Proposition 2.5 (4) Intersection–Image. Basically,
we will be exchanging paths of P for quasi-convex subsets of X, further thickening the
involved sets.

Proposition 5.1. — For every δ, η ⩾ 0, there exist θ ⩾ 0 and ζ : R⩾0 × R⩾0 → R⩾0

with the following property. Let πA : X → A be a δ-constricting map. Let Y be an
η-quasi-convex subset of X. Let ε1 ⩾ 0, ε2 ⩾ 0. Then

| diam(A+θ+ε1 ∩ Y +ε2) − diamA(Y )| ⩽ ζ(ε1, ε2).

Proof. — Let δ, η ⩾ 0. Let θ0 = θ0(δ) ⩾ 0 be the constant of Proposition 2.5. We put
θ = δ + η + 1. Let ζ : R⩾0 × R⩾0 → R⩾0 depending on δ, η. Its exact value will be
precised below. Let πA : X → A be a δ-constricting map. Let Y be an η-quasi-convex
subset of X. Let ε1 ⩾ 0, ε2 ⩾ 0.

First we prove that diamA(Y ) ⩽ diam(A+θ+ε1 ∩ Y +ε2) + ζ(ε1, ε2). Let x, y ∈ Y . It
suffices to assume that |x − y|A > δ. Let γ ∈ P joining x to y. By (CS2), there exist
p, q ∈ γ such that

max{|πA(x) − p|, |πA(y) − q|} ⩽ δ.

Since the subset Y is η-quasi-convex, there exist p′, q′ ∈ Y such that

max{|p− p′|, |q − q′|} ⩽ η + 1.

By the triangle inequality,

|x− y|A ⩽ |πA(x) − p| + |p− p′| + |p′ − q′| + |q′ − q| + |q − πA(y)|.

Since p′, q′ ∈ A+θ+ε1 ∩ Y +ε2 , we have |p′ − q′| ⩽ diam(A+θ+ε1 ∩ Y +ε2). Hence,

|x− y|A ⩽ diam(A+θ+ε1 ∩ Y +ε2) + 2δ + 2η + 1.

Now we prove that diam(A+θ+ε1 ∩Y +ε2) ⩽ diamA(Y )+ζ(ε1, ε2). Let x, y ∈ A+θ+ε1 ∩
Y +ε2 . Since x, y ∈ Y +ε2 , there exist x′, y′ ∈ Y such that max{|x− x′|, |y − y′|} ⩽ ε2 + 1.
By the triangle inequality,

|x− y| ⩽ |x− πA(x)| + |x− x′| + |x′ − y′|A + |y′ − y|A + |πA(y) − y|.
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Since x, y ∈ A+θ+ε1 , it follows from Proposition 2.5 (1) Coarse nearest-point projection
that

max{|x− πA(x)|, |y − πA(y)|} ⩽ µ(θ + ε1) + θ0.

It follows from Proposition 2.5 (3) Coarse Lipschitz Map that,

max{|x− x′|A, |y − y′|A} ⩽ µ(ε2 + 1) + θ0.

Since πA(x′), πA(y′) ∈ πA(Y ), we have |x′ − y′|A ⩽ diamA(Y ). Hence,

|x− y| ⩽ diamA(Y ) + 2µ(θ + ε1) + 2µ(ε2 + 1) + 4θ0.

Finally, we put ζ(ε1, ε2) = max{2δ + 2η + 1, 2µ(θ + ε1) + 2µ(ε2 + 1) + 4θ0}.

Applying the symmetry of Proposition 5.1 in combination with Proposition 2.5 (6)
Morseness and (7) Coarse invariance, we deduce:

Corollary 5.2. — For every δ ⩾ 0, there exists θ ⩾ 0 with the following property. Let
πA : X → A and πB : X → B be δ-constricting maps. Then:

| diamA(B) − diamB(A)| ⩽ θ.

6. Finding a quasi-convex element

Given a torsion-free hyperbolic group G containing a loxodromic element g0 and an
infinite index quasi-convex subgroup H, one can find another loxodromic element g ∈ G

conjugate to g0 so that H has trivial intersection with ⟨g⟩ [3, Theorem 1]. The goal of
this section is to reimplement this fact in our setting, using a “quasi-convex element”
instead of a loxodromic element.

Convention 6.1. — In this section, we fix:

▶ Constants µ ⩾ 1, ν ⩾ 0.

▶ A (µ, ν)-path system group (G,X,P).

Definition 6.2 (Quasi-convex element). — Let η ⩾ 0. An element g ∈ G is η-quasi-
convex if the following holds:

(QE1) g has infinite order.

(QE2) ⟨g⟩ is an η-quasi-convex subgroup of G.

We will write (g,A) when we need to stress the η-quasi-convex subset A that ⟨g⟩ is
preserving.

The main result of this section is the following.
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Proposition 6.3. — Let η ⩾ 0. Assume that G contains an η-quasi-convex element
(g,A). There exists θ = θ(η, g, A) ⩾ 1 satisfying the following. Let (H,Y ) be an
η-quasi-convex subgroup of G. Then:

(i) For every u ∈ G, if diam(uA ∩ Y ) > θ, then uA ⊂ Y +θ.

(ii) Let H ⩽ K ⩽ G. If [K : H] > θ, then there exist k ∈ K such that diam(kA∩Y ) ⩽ θ.

Remark 6.4. — Under the notation of (ii), when K = G, the element kgk−1 has the
desired property that we were looking for. Note that (kgk−1, kA) is quasi-convex since
P is G-invariant.

The rest of the section is devoted to the proof of Proposition 6.3.

Definition 6.5. — Let κ ⩾ 1, l ⩾ 0. A map ϕ : (Y, dY ) → (Z, dZ) between two metric
spaces is a (κ, l)-quasi-isometric embedding if for every y, y′ ∈ Y ,

1
κ
dY (y, y′) − l ⩽ dZ(ϕ(y), ϕ(y′)) ⩽ κdY (y, y′) + l.

We start with a variant of Milnor-Schwarz Theorem. If U is a generating set of a
group H, we denote by dU the word metric of H with respect to U .

Lemma 6.6. — For every η ⩾ 0, there exist θ ⩾ 1 with the following property. Let (H,Y )
be an η-quasi-convex subgroup of G. For every y ∈ Y , there exists a finite generating
set U of H such that the orbit map (H, dU ) → X, h 7→ hy is a (θ, θ)-quasi-isometric
embedding.

For the proof, one can use the same kind of argument as that of Milnor-Schwarz
Theorem, but bearing in mind that Y might not be a length metric space, which is
required by the original statement. The only difference here is that one uses the paths of
P with endpoints in Y . They are enough for the proof since they approximate sufficiently
well the distances, at least in this situation.

Lemma 6.7. — Let η ⩾ 0. Let H ⩽ G be an abelian subgroup. Let Y ⊂ X be an
H-invariant subset so that the action of H on Y is η-cobounded. Then, for every h ∈ H

and for every y, z ∈ Y , ∣∣|y − hy| − |z − hz|
∣∣ ⩽ 2η.

Proof. — Let h ∈ H. Let y, z ∈ Y . Since the action of H on Y is η-cobounded, there
exists k ∈ H such that |z − ky| ⩽ η. By the triangle inequality,

|y − hy| ⩽ |ky − khy| ⩽ |ky − z| + |z − hz| + |hz − khy|.

Since the subgroup H is abelian, |hz − khy| = |z − ky|. Thus, |y − hy| ⩽ |z − hz| + 2η.
Finally, exchanging the roles of y and z, we obtain |y − hy| ⩾ |z − hz| − 2η.
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Next, we are going to check that we can obtain uniform quasi-isometric embeddings
of Z in X via the orbit maps of quasi-convex elements of G that share the same constant.
For this reason, we introduce the following definition:

Definition 6.8. — Let g ∈ G. Let x ∈ X. The stable translation length of g is

∥g∥∞ = lim sup
m→∞

1
m

|gmx− x|.

Note that ∥g∥∞ does not depend on the choice of the point x ∈ X.

Remark 6.9. — Let g ∈ G. By subadditivity, for every x ∈ X, we have

∥g∥∞ = inf
m⩾1

1
m

|gmx− x| = lim
m→∞

1
m

|gmx− x|.

Lemma 6.10. — Let η ⩾ 0. Let g ∈ G. Let A ⊂ X be a ⟨g⟩-invariant subset so that the
action of ⟨g⟩ on A is η-cobounded. The following statements are equivalent:

(i) There exists x ∈ X such that the orbit map Z → X, m 7→ gmx is a quasi-isometric
embedding.

(ii) ∥g∥∞ > 0.

(iii) There exists θ = θ(η, g, A) ⩾ 1 such that for every a ∈ A, the orbit map Z → X,
m 7→ gma is a (θ, 0)-quasi-isometric embedding.

Proof. — The implication (iii) ⇒ (i) already holds.
(i) ⇒ (ii). Assume that there exists x ∈ X such that the orbit map Z → X, m 7→ gmx

is a quasi-isometric embedding. Then there exist κ ⩾ 1, l ⩾ 0 such that for every m ⩾ 1,

1
κ

− l

m
⩽

1
m

|x− gmx| ⩽ κ+ l

m
.

Therefore, ∥g∥∞ ⩾ 1
κ > 0.

(ii) ⇒ (iii). Assume that ∥g∥∞ > 0. Let ∥g∥A = infa∈A |a − ga|. Then we can
define θ = max

{
∥g∥A + 2η, 1

∥g∥∞ , 1
}

. Let a ∈ A. Applying the triangle inequality we
obtain that for every m ∈ Z, |a − gma| ⩽ |a − ga||m|. It follows from Lemma 6.7
that |a − ga| ⩽ ∥g∥A + 2η. Since ∥g∥∞ = infn∈Z−{0}

1
|n| |a − g|n|a|, we obtain that for

every m ∈ Z, |a − gma| ⩾ ∥g∥∞ |m|. Hence the orbit map Z → X, m 7→ gma is a
(θ, 0)-quasi-isometric embedding.

Lemma 6.11. — Let η ⩾ 0. Let (g,A) be an η-quasi-convex element of G. There exists
θ = θ(η, g, A) ⩾ 1 such that for every a ∈ A, the orbit map Z → X, m 7→ gma is a
(θ, 0)-quasi-isometric embedding. Moreover, ∥g∥∞ > 0.

Proof. — We are going to apply Lemma 6.6 and Lemma 6.10. Let a ∈ A. According
to Lemma 6.6, there exist a finite generating set U of ⟨g⟩ such that the orbit map
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ϕ : (⟨g⟩, dU ) → X, h 7→ ha is a quasi-isometric embedding. Furthermore, since g has
infinite order, the map χ : Z → ⟨g⟩, m 7→ gm is an isomorphism. Let V = χ−1(U). In
particular χ : (Z, dV ) → (⟨g⟩, dU ) is an isometry. Morover, the map ψ : Z → (Z, dV )
is a quasi-isometric embedding. Hence, the composition ϕ ◦ χ ◦ ψ is a quasi-isometric
embedding. Now both of the statements of the lemma follow from Lemma 6.10.

We continue by upper bounding the length of a quasi-geodesic of X by the number
of points of an orbit of a subgroup H of G that fall inside a precise neighbourhood of
this quasi-geodesic, whenever the quasi-geodesic falls also inside a neighbourhood of that
orbit.

Lemma 6.12. — For every η ⩾ 0, κ ⩾ 1, l ⩾ 0, there exists θ ⩾ 1 with the following
property. Let H ⩽ G. Let Y ⊂ X be an H-invariant subset such that the action of H on
Y is η-cobounded. Let y ∈ Y . Let γ be a (κ, l)-quasi-geodesic of X such that γ ⊂ Y +η.
Let U = {u ∈ H : uy ∈ γ+2η+1}. Then

ℓ(γ) ⩽ θ|U |.

Proof. — Let η ⩾ 0, κ ⩾ 1, l ⩾ 0. Let θ = θ(η, κ, l) ⩾ 1. Its exact value will be precised
below. Let H, Y , y, γ : [0, L] → X and U as in the statement. Let m =

⌊
L
θ

⌋
+ 1. We fix

a partition 0 = t0 ⩽ t1 ⩽ · · · ⩽ tm = L of [0, L] such that |tm−1 − tm| ⩽ θ and such that
if m ⩾ 2, then for every i ∈ J0,m − 2K, we have |ti − ti+1| = θ. Hence ℓ(γ) = L ⩽ θm.
We prove that m ⩽ |U |. Let i ∈ J0,m− 1K. Denote xi = γ(ti). Since the action of H on
Y is η-cobounded and γ ⊂ Y +η, for every i ∈ J0,m− 1K, there exists hi ∈ H such that
|xi − hiy| ⩽ 2η + 1. In particular, hi ∈ U . From now on we may assume that m ⩾ 2,
otherwise there is nothing to show. Let i, j ∈ J0,m − 1K such that i ̸= j. We claim
that hi ̸= hj . The claim will follow when we show that |hiy − hjy| > 0. By the triangle
inequality,

|hiy − hjy| ⩾ |xi − xj | − |xi − hiy| − |xj − hjy|.

Since γ is a (κ, l)-quasi-geodesic,

|xi − xj | ⩾ 1
κ

|ti − tj | − l

κ
.

Since i, j ∈ J0,m− 1K, we have that |ti − tj | ⩾ θ. To sum up,

|hiy − hjy| ⩾ θ

κ
− l

κ
− 4η − 2.

Finally, we put θ = κ
(

l
κ + 4η + 2

)
+ 1. Hence, |hiy − hjy| > 0. In particular, we obtain

m ⩽ |U |.

The following fact is a direct consequence of the triangle inequality:

Lemma 6.13. — Let η ⩾ 0. Let H ⩽ G. Let Y ⊂ X be an H-invariant subset so that
the action of H on Y is η-cobounded. Then, for every y, z ∈ Y , there exists h ∈ H such
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that for every r > 0,
h−1 StabG(y, r)h ⊂ StabG(z, r + 2η).

Finally, we show that there is a uniform threshold that ensures the existence of a
uniformly short element in the intersection of any pair of quasi-convex subgroups of G
that share the same constant.

Lemma 6.14. — For every η ⩾ 0, there exists θ ⩾ 1 with the following property. Let
(H,Y ) and (K,Z) be η-quasi-convex subgroups of G. If diam(Y ∩ Z) > θ, then there
exist y ∈ Y ∩ Z and h ∈ H ∩K ∩ StabG(y, θ) − {1G}.

Proof. — Let η ⩾ 0. Let θ0 = θ0(η, µ, ν) ⩾ 1 be the constant of Lemma 6.12. Let o ∈ Y .
We denote W = StabG(o, 6η+ 2). Let θ1 = θ0|W | + θ0. Note that the constant θ1 is finite
since the action of G on X is proper. We put θ = 2θ1 + 4η+ 2. Let (H,Y ) and (K,Z) be
η-quasi-convex subgroups of G. Assume that diam(Y ∩Z) > θ. Since diam(Y ∩Z) > θ1,
there exist y, z ∈ Y ∩Z such that |y− z| > θ1. Let β ∈ P joining y to z. Since ℓ(β) > θ1,
there exist z′ ∈ β and a subpath γ of β joining y to z′ such that ℓ(γ) = θ1. We denote
U = {u ∈ H : uy ∈ γ+2η+1} and V = StabG(y, 4η + 2).

The first step is to construct a map ϕ : U → V . Let u ∈ U . By definition of U , there
exists x ∈ γ such that |uy − x| ⩽ 2η + 1. Since the subgroup (K,Z) is η-quasi-convex,
there exists ku ∈ K such that |x− kuy| ⩽ 2η + 1. By the triangle inequality,

|uy − kuy| ⩽ |uy − x| + |x− kuy|.

Consequently, |u−1kuy − y| ⩽ 4η + 2. Hence, u−1ku ∈ V . We define ϕ : U → V to be the
map that sends every u ∈ U to u−1ku ∈ V .

Next, we show that the map ϕ : U → V is not injective. Since Y is η-quasi-convex, we
have that γ ⊂ β ⊂ Y +η. It follows from Lemma 6.12 that |U | ⩾ 1

θ0
ℓ(γ). By hypothesis,

ℓ(γ) = θ0|W |+θ0. Since the action of H on Y is η-cobounded, it follows from Lemma 6.13
that there exists h ∈ H such that h−1V h ⊂ W and hence |W | ⩾ |h−1V h| = |V |.
Consequently, |U | > |V |. Therefore, the map ϕ : U → V is not injective.

Now we claim that U ⊂ StabG(y, θ1 + 2η + 1). Let u ∈ U . By definition of U , there
exists x ∈ γ such that d|x− uy| ⩽ 2η + 1. By the triangle inequality,

|y − uy| ⩽ |y − x| + |x− uy|.

Moreover, |y − x| ⩽ ℓ(γ) = θ1. Hence |y − uy| ⩽ θ1 + 2η + 1.
Finally, since the map ϕ : U → V is not injective, there exist u1, u2 ∈ U such that

u1 ̸= u2 and u−1
1 ku1 = u−1

2 ku2 . In particular, u2u
−1
1 ∈ H ∩K − {1G}. Further, according

to the triangle inequality,

|y − u2u
−1
1 y| ⩽ |y − u2y| + |u2y − u2u

−1
1 y|.
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It follows from the claim above that |y − u2u
−1
1 y| ⩽ θ. Therefore, u2u

−1
1 ∈ H ∩ K ∩

StabG(y, θ) − {1G}.

We are ready to prove the proposition:

Proof of Proposition 6.3. — Let η ⩾ 0. Assume that G contains an η-quasi-convex
element (g,A). We are going to determine the value of θ = θ(η, g, A) ⩾ 1. By Lemma 6.11,
there exists θ0 = θ0(η, g, A) ⩾ 1 such that for every a ∈ A, the orbit map Z → X,
m 7→ gma is a (θ0, 0)-quasi-isometric embedding. Let θ1 = θ1(η) ⩾ 1 be the constant of
Lemma 6.14. Let θ2 = η + θ2

0θ1. Let o ∈ A. We denote U = StabG(o, 2θ2 + η + 1). Let
θ = max{θ2, |U |}. Note that the constant θ is finite since the action of G on X is proper.
Let (H,Y ) be an η-quasi-convex subgroup of G.

(i) Let u ∈ G. Assume that diam(uA ∩ Y ) > θ. Let a ∈ A. We prove that ua ∈
Y +θ2 . Since P is G-invariant, the element (ugu−1, uA) is η-quasi-convex. Since
diam(uA ∩ Y ) > θ1, according to Lemma 6.14, there exist b ∈ A and M ∈ Z − {0}
such that ub ∈ uA ∩ Y and ugMu−1 ∈ H ∩ StabG(ub, θ1). Since the action of ⟨g⟩
on A is η-cobounded, there exists m ∈ Z such that |a − gmb| ⩽ η. By Euclid’s
division Lemma, there exist q, r ∈ Z such that m = qM + r and 0 ⩽ r ⩽ |M | − 1.
By the triangle inequality,

d(ua, Y ) ⩽ |ua− ugqMb| ⩽ |ua− ugmb| + |ugmb− ugqMb|.

Note that |ua− ugmb| = |a− gmb| ⩽ η. Moreover, it follows from Lemma 6.11 that

|ugmb− ugqMb| = |grb− b| ⩽ θ0|r|.

Note also that |r| ⩽ |M |. Applying again Lemma 6.11, we obtain that |M | ⩽
θ0|gMb− b|. By Lemma 6.14, |gMb− b| = |ugMu−1ub− ub| ⩽ θ1. Hence,

d(ua, Y ) ⩽ θ2 ⩽ θ.

(ii) Let H ⩽ K ⩽ G. We argue by contraposition. Assume that for every k ∈ K, we
have diam(kA ∩ Y ) > θ. We prove that [K : H] ⩽ |U |. It follows from (i) that
KA ⊂ Y +θ2 . Then there exists y ∈ Y such that |o− y| ⩽ θ2 + 1. Since the action
of H on Y is η-cobounded, we have that Y ⊂ (Hy)+η. Hence Ko ⊂ (Hy)+θ2+η. In
particular, for every k ∈ K, there exists hk ∈ H such that |ko− hky| ⩽ θ2 + η. Let
K ′ be a set of representatives of the set H\K of right cosets of H. Then the set
K ′′ = {h−1

k k : k ∈ K ′} is a set of representatives of H\K. We claim that K ′′ ⊂ U .
Let k ∈ K ′. By the triangle inequality,

|h−1
k ko− o| = |ko− hko| ⩽ |ko− hky| + |hky − hko|.
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Thus, |h−1
k ko− o| ⩽ 2θ2 + η + 1. This proves the claim. Consequently,

[K : H] ⩽ |K ′′| ⩽ |U | ⩽ θ.

7. Constricting elements

Convention 7.1. — In this section, we fix:

▶ Constants µ ⩾ 1 and ν, δ ⩾ 0.

▶ A (µ, ν)-path system group (G,X,P).

▶ A δ-constricting element (g,A).

▶ A δ-constricting map πA : X → A.

7.1. A G-invariant family

The set of G-translates of A is a G-invariant family of δ-constricting subsets. Indeed,
consider the stabilizer Stab(A) of A and fix a set Rg of representatives of G/ Stab(A).
Let u ∈ G and u0 ∈ Rg such that uA = u0A. The map πuA : X → uA defined as

∀x ∈ X, πuA(x) = u0πA(u−1
0 x).

is then δ-constricting since P is G-invariant. Moreover, the element (ugu−1, uA) is
δ-constricting. To cope with the possible lack of ⟨ugu−1⟩-equivariance of the map
πuA : X → uA, we make the following observation:

Proposition 7.2. — There exists θ ⩾ 0 satisfying the following. Let u ∈ G. Then:

(i) For every x ∈ X, we have |πuA(x) − uπA(u−1x)| ⩽ δ.

(ii) For every Y ⊂ X, we have | diamuA(Y ) − diam(uπA(u−1Y ))| ⩽ θ.

Proof. — Let θ0 = θ0(δ) ⩾ 0 be the constant of Proposition 2.5. We put θ = 2θ0. Let
u ∈ G.

(i) Let x ∈ X. Denote y = u−1x. Let u0 ∈ Rg such that uA = u0A. We see that,

|πuA(x) − uπA(u−1x)| = |u0πA(u−1
0 x) − uπA(u−1x)| = |πA(u−1

0 uy) − u−1
0 uπA(y)|.

Since u−1
0 u ∈ Stab(A), it follows from Proposition 2.5 (2) Coarse equivariance that

|πuA(x) − uπA(u−1x)| ⩽ θ0.
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(ii) Let Y ⊂ X. Let y, y′ ∈ Y . By the triangle inequality,

∣∣|πuA(y) − πuA(y′)|−|uπA(u−1y) − uπA(u−1y′)|
∣∣ ⩽

|πuA(y) − uπA(u−1y)| + |uπA(u−1y′) − πuA(y′)|.

It follows from (i) that

max
{

|uπuA(y) − uπA(u−1y)|, |uπA(u−1y′) − πuA(y′)|
}
⩽ θ0.

Hence, we have | diamuA(Y ) − diam(uπA(u−1Y ))| ⩽ 2θ0.

7.2. Finding a constricting element

The goal of this subsection is to combine Proposition 6.3 and Proposition 5.1. We
suggest to compare (ii) below with the property (BS2) of the buffering sequences.

Proposition 7.3. — Let η ⩾ 0. There exists θ ⩾ 1 satisfying the following. Let (H,Y )
be an η-quasi-convex subgroup of G. Then:

(i) For every u ∈ G, if diamuA(Y ) > θ, then uA ⊂ Y +θ.

(ii) Let H ⩽ K ⩽ G. If [K : H] > θ, then there exists k ∈ K such that diamkA(Y ) ⩽ θ.

Proof. — Let η ⩾ 0. Let θ = θ(η) ⩾ 1. Its exact value will be precised below. It follows
from Proposition 2.5 (6) Morseness and (7) Coarse invariance that there exists θ0 ⩾ 0
such that the element (g,A) is θ0-quasi-convex. Let θ1 = max{η, θ0}. By Proposition 5.1,
there exist θ2 ⩾ 0, ζ ⩾ 0 depending both on θ1 such that for every u ∈ G and for every
θ1-quasi-convex subset Y ⊂ X, we have

diamuA(Y ) − ζ ⩽ diam(uA+θ2 ∩ Y ) ⩽ diamuA(Y ) + ζ.

According to Proposition 2.5 (6) Morseness and (7) Coarse invariance, there exist
θ3 = θ3(θ2) ⩾ 0 such that the element (g,A+θ2) is θ3-quasi-convex. Let θ4 = max{η, θ3}.
Let θ5 = θ5(θ4, g, A) ⩾ 1 be the constant of Proposition 6.3. Finally, we put θ = θ5 + ζ.
Let (H,Y ) be an η-quasi-convex subgroup of G.

(i) Let u ∈ G. Assume that diamuA(Y ) > θ. According to Proposition 5.1, we
have diam(uA+θ2 ∩ Y ) > θ5 and according to Proposition 6.3 (i) this implies that
uA ⊂ Y +θ5 ⊂ Y +θ.

(ii) Let H ⩽ K ⩽ G. We argue by contraposition. Assume that for every k ∈ K, we
have diamkA(Y ) > θ. According to Proposition 5.1, for every k ∈ K, we have
diam(kA+θ2 ∩ Y ) > θ5 and according to Proposition 6.3 (ii) this implies that
[K : H] ⩽ θ5 ⩽ θ.
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7.3. Elementary closures

The elementary closure of (g,A) could be thought as the set of elements u ∈ G such
that uA is “parallel” to A:

Definition 7.4. — The elementary closure of (g,A) in G is defined as

E(g,A) = {u ∈ G : dHaus(uA,A) < ∞}.

Observe that E(g,A) is a subgroup of G since dHaus is a pseudo-distance.

This subsection is devoted to provide a further description E(g,A). We suggest to
compare the proposition below with the property (BS1) of the buffering sequences.

Proposition 7.5. — There exists θ ⩾ 1 satisfying the following:

(i) For every u ∈ G, we have

max{diamuA(A), diamA(uA)} > θ ⇐⇒ dHaus(uA,A) ⩽ θ.

(ii) E(g,A) = {u ∈ G : dHaus(uA,A) ⩽ θ}.

(iii) [E(g,A) : ⟨g⟩] ⩽ θ.

Proof. — Let θ0 ⩾ 0 be the constant of Proposition 7.2. According to Proposition 2.5
(6) Morseness, there exists θ1 ⩾ 0 such that the element (g,A) is θ1-quasi-convex. Let
θ2 = θ2(θ1) ⩾ 1 be the constant of Proposition 7.3. We put θ = θ0 + θ2.

Claim 7.6. — Let u ∈ G. If dHaus(uA,A) < ∞, then diamuA(A) = ∞.

Let u ∈ G. Assumme that dHaus(uA,A) < ∞ and denote ε = dHaus(uA,A) + 1. By
Proposition 5.1, there exist θ3, ζ ⩾ 0 such that for every u ∈ G we have

diamuA(A) − ζ ⩽ diam(uA+θ3 ∩A+ε) ⩽ diamuA(A) + ζ.

Note that uA ⊂ uA+θ3 ∩ A+ε and diam(uA) = diam(A). Since the action of G on
X is proper and since the element g has infinite order, we have that diam(A) = ∞.
Consequently, we have diam(uA+θ3 ∩A+ε) = ∞. Finally, it follows from Proposition 5.1
that diamuA(A) = ∞. This proves the claim.

(i) Let u ∈ G. Assume that max{diamuA(A), diamA(uA)} > θ. By Proposition 7.2,

diamu−1A(A) ⩾ diamA(u−1πA(uA)) − θ0.

Hence, diamu−1A(A) > θ2. It follows from Proposition 7.3 (i) that uA ⊂ A+θ and
u−1A ⊂ A+θ. Hence dHaus(uA,A) ⩽ θ. The converse follows from the claim above.
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(ii) This follows from (i) and the claim above.

(iii) This follows from (i), (ii) and Proposition 7.3 (ii).

Finally, we obtain an algebraic description of E(g,A).

Corollary 7.7. — There exist θ ⩾ 1 and M ∈ J1, θK such that for every u ∈ G, the
following statements are equivalent:

(i) u ∈ E(g,A).

(ii) There exists p ∈ {−1, 1} such that ugMu−1 = gpM .

(iii) There exist m,n ∈ Z − {0} such that ugmu−1 = gn.

Further, let E+(g,A) = {u ∈ G : ugMu−1 = gM }. Then [E(g,A) : E+(g,A)] ⩽ 2.

Proof. — By Proposition 7.5 (ii), there exists θ0 ⩾ 1 such that [E(g,A) : ⟨g⟩] ⩽ θ0.
Let θ = θ0! We construct M ∈ J1, θK. First, we claim that there exists a subgroup
K ⩽ ⟨g⟩ such that K ⊴ E(g,A) and [E(g,A) : K] ⩽ θ. Consider the natural action
of E(g,A) by right multiplication on the set ⟨g⟩\E(g,A) of right cosets of ⟨g⟩. This
gives an homomorphism ϕ : E(g,A) → Sym(⟨g⟩\E(g,A)). Choose K = Ker(ϕ). Note
that ⟨g⟩ = {h ∈ E(g,A) : ϕ(h)(⟨g⟩)} = ⟨g⟩. Thus, K ⩽ ⟨g⟩. Morover, K ⊴ E(g,A).
Further, we have that |Sym(⟨g⟩\E(g,A))| = [E(g,A) : ⟨g⟩]! and hence [E(g,A) : K]
divides [E(g,A) : ⟨g⟩]! Therefore, [E(g,A) : K] ⩽ θ. This proves the claim. Now,
since the element g has infinite order, the subgroup E(g,A) is infinite. Hence, since
[E(g,A) : K] < ∞ there exists M ⩾ 1 such that K = ⟨gM ⟩. Finally, we remark that M
is equal to the order of the element ϕ(g). Hence, M ⩽ θ.

Let u ∈ G. The implication (ii) ⇒ (iii) already holds.
(i) ⇒ (ii). Assume that u ∈ E(g,A). Since the subgroup ⟨gM ⟩ is normal in E(g,A),

there exists p ∈ Z such that ugMu−1 = gpM . In particular,

⟨gM ⟩ = u⟨gM ⟩u−1 = ⟨ugMu−1⟩ = ⟨gpM ⟩.

Hence, if p ̸∈ {−1,+1}, then ⟨gM ⟩ ̸⊂ ⟨gpM ⟩. Contradiction.
(iii) ⇒ (i). Assume that there exist m,n ∈ Z − {0} such that ugmu−1 = gn. Since

both ⟨gm⟩ and ⟨gn⟩ have finite index in ⟨g⟩, there exist ζ ⩾ 0 the actions of ⟨ugmu−1⟩
on uA and of ⟨gn⟩ on A are both ζ-cobounded. Let x ∈ uA and y ∈ A. We obtain
dHaus(uA,A) ⩽ ζ + |x− y|. Hence dHaus(uA,A) < ∞.

Finally, let E+(g,A) = {u ∈ G : ugMu−1 = gM }. We prove that [E(g,A) :
E+(g,A)] ⩽ 2. It is enough to assume that E(g,A) ̸= E+(g,A). Let u, v ∈ E(g,A) −
E+(g,A). We show that v−1u ∈ E+(g,A). Since ugMu−1 = vgMv−1 = g−M , we
have v−1ugMu−1v = v−1g−Mv = gM and therefore v−1u ∈ E+(g,A). Hence [E(g,A) :
E+(g,A)] = 2
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7.4. Forcing a geometric separation

In this subsection, we build large powers of our constricting element (g,A) to produce
a translate Y ′ of a subset Y so that the distance between their projections to a preferred
G-translate of A is large. We will do it in two different ways. We will apply these results
to verify (BS4) in the construction of buffering sequences. Our main tool will be:

Lemma 7.8. — There exists θ ⩾ 0 such that for every x, x′ ∈ X and for every m ∈ Z,

|x− gmx′|A ⩾ |m| ∥g∥∞ − |x− x′|A − θ.

Proof. — Let θ = θ(δ) ⩾ 0 be the constant of Proposition 2.5. Let x, x′ ∈ X. Let m ∈ Z.
If m = 0, then there is nothing to do. Assume that m ̸= 0. By the triangle inequality,

|x− gmx′|A ⩾ |πA(x) − gmπA(x)| − |x− x′|A − |gmπA(x′) − πA(gmx′)|.

Note that
1

|m|
|πA(x) − gmπA(x)| ⩾ inf

n⩾1

1
n

|πA(x) − gnπA(x)| = ∥g∥∞ .

By Proposition 2.5 (2) Coarse equivariance, we have |gmπA(x′)−πA(gmx′)| ⩽ θ. Therefore,
we have |x− gmx′|A ⩾ |m| ∥g∥∞ − |x− x′|A − θ.

The first way of forcing a geometric separation will be applied to the study of the
relative exponential growth rates:

Proposition 7.9. — For every ε, θ ⩾ 0, there exists M ⩾ 1 with the following property.
Let H ⩽ G be a subgroup. Let Y ⊂ X be an H-invariant subset. If diamA(Y ) ⩽ ε, then
for every u ∈ ⟨gM , H ∩ E(g,A)⟩ −H ∩ E(g,A), we have dA(Y, uY ) > θ.

Proof. — Let ε, θ ⩾ 0. Let θ0 ⩾ 0 be the constant of Proposition 2.5. By Lemma 7.8,
there exists θ1 ⩾ 0 such that for every x, x′ ∈ X and for every m ∈ Z,

|x− gmx′|A ⩾ |m| ∥g∥∞ − |x− x′|A − θ1.

Combining Lemma 6.11 and Proposition 2.5 (6) Morseness, we obtain ∥g∥∞ > 0. Ac-
cording to Corollary 7.7, there exists M0 ⩾ 1 such that

E(g,A) =
{
u ∈ G : ∃ p ∈ {−1,+1}ugM0u−1 = gpM0

}
.

Let m0 >
θ−2ε−2θ0−θ1

M0∥g∥∞ . We put M = M0m0.
Let H ⩽ G be a subgroup. Let Y ⊂ X be an H-invariant subset. Assume that

diamA(Y ) ⩽ ε. Let u ∈ ⟨gM , H ∩ E(g,A)⟩ −H ∩ E(g,A) and y, y′ ∈ Y . It follows from
Corollary 7.7 that there exists n ∈ Z multiple of M and f ∈ H ∩ E(g,A) such that
u = gnf . By the triangle inequality,
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|y − gnfy′|A ⩾ |y − gny′|A − |πA(gny′) − gnπA(y′)| − |y′ − fy′|A − |gnπA(fy′) − πA(gnfy′)|.

By Lemma 7.8,
|y − gny′|A ⩾ |n| ∥g∥∞ − |y − y′|A − θ1

Note that u ̸∈ H ∩ E(g,A) implies n ̸= 0. Hence |n| ⩾ |M |. Since f ∈ H and
diamA(Y ) ⩽ ε,

max{|y − y′|A, |y′ − fy′|A} ⩽ ε.

By Proposition 2.5 (2) Coarse equivariance,

max{|πA(gny′) − gnπA(y′)|, |gnπA(fy′) − πA(gnfy′)|} ⩽ θ0.

Since the elements y, y′ are arbitrary, we obtain dA(Y, uY ) > θ.

The second way of forcing a geometric separation will be applied to the study of the
quotient exponential growth rates:

Proposition 7.10. — For every ε, θ ⩾ 0, there exist M ⩾ 1 and f : G×X → {1G, g
M }

with the following property. Let Y ⊂ X be subset. If diamA(Y ) ⩽ ε, then for every
u ∈ G and for every y ∈ Y , we have duA(y, uf(u, y)Y ) > θ.

Proof. — Let ε, θ ⩾ 0. Let θ0 ⩾ 0 be the constant of Proposition 7.2. By Lemma 7.8,
there exists θ1 ⩾ 0 such that for every x, x′ ∈ X and for every m ∈ Z,

|x− gmx′|A ⩾ |m| ∥g∥∞ − |x− x′|A − θ1.

Combining Lemma 6.11 and Proposition 2.5 (6) Morseness, we obtain ∥g∥∞ > 0. We put
M > 2θ+2ε+8θ0+θ1

∥g∥∞ . Then, for every u ∈ G and for every x ∈ X, there exists f(u, x) ∈
{1G, g

M } such that |u−1x−f(u, x)|A > θ+ε+4θ0: if |u−1x−x|A > θ+ε+4θ0, we choose
f(u, x) = 1G, otherwise we choose f(u, x) = gM . This defines f : G×X → {1G, g

M }.
Let Y ⊂ X be a subset. Assume that diamA(Y ) ⩽ ε. Let u ∈ G. Let y, y′ ∈ Y . By

abuse of notation, we write f instead of f(u, y). By the triangle inequality,

|y − ufy′|uA ⩾ |y − ufy|uA − |ufy − ufy′|uA,

|y − ufy|uA ⩾ |u−1y − fy|A − |πuA(y) − uπA(u−1y)| − |πuA(ufy) − uπA(fy)|,

|ufy − ufy′|uA ⩽ |πuA(ufy) − ufπA(y)| + |y − y′|A + |ufπA(y′) − πuA(ufy′)|.

By hypothesis, |u−1y − fy|A > θ + ε+ 4θ0 and |y − y′|A ⩽ diamA(Y ) ⩽ ε. By Proposi-
tion 7.2,

max{|πuA(y) − uπA(u−1y)|, |πuA(ufy) − uπA(fy)|} ⩽ θ0.

max{|πuA(ufy) − ufπA(y)|, |ufπA(y′) − πuA(ufy′)|} ⩽ θ0.
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Since the element y′ is arbitrary, we obtain duA(y, ufY ) > θ.

8. Growth of quasi-convex subgroups

The goal of this section is to prove Theorem 1.8 and Theorem 1.13.

Convention 8.1. — In this section, we fix:

▶ Constants µ ⩾ 1 and ν, δ, η ⩾ 0.

▶ A (µ, ν)-path system group (G,X,P).

▶ A δ-constricting element (g0, A0).

▶ An infinite index η-quasi-convex subgroup (H,Y ) of G.

We are going to replace the axis A0 for A′
0 = E(g0, A0)A0. Note that dHaus(A0, A

′
0) <

∞ (Proposition 7.5 (ii)). Up to replacing δ for a larger constant, it follows from
Proposition 2.5 (7) Coarse invariance and Corollary 7.7 that the element (g0, A

′
0) is

δ-constricting. By abuse of notation, we still denote A0 = A′
0. In this new setting,

we have kA0 = A0, for every k ∈ E(g0, A0). Let θ0 = θ0(δ, η) ⩾ 1 be the constant of
Proposition 7.3. Since [G : H] = ∞, there exist u ∈ G such that diamuA0(Y ) ⩽ θ0

(Proposition 7.3 (ii)). We denote (g,A) = (ug0u
−1, uA0).

8.1. Case ω(H) < ω(G)

In this subsection we prove:

Theorem 8.2 (Theorem 1.8). — Assume that

(i) ω(H) < ∞.

(ii) The action of H on X is divergent.

Then ω(H) < ω(G).

We require the following.

Proposition 8.3 (Theorem 1.10). — There exist M ⩾ 1 satisfying the following:

(i) E(g,A) is a finite extension of ⟨g⟩.

(ii) H ∩ E(g,A) is a finite proper subgroup of ⟨gM , H ∩ E(g,A)⟩.

(iii) The natural homomorphism H ∗H∩E(g,A) ⟨gM , H ∩ E(g,A)⟩ → G is injective.
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Proof. — The subgroup E(g,A) is a finite extension of ⟨g⟩ (Proposition 7.5 (iii)). This
proves (i). Since diamA(Y ) ⩽ θ0 and the action of H∩E(g,A) on Y ∩A+ρ for ρ = d(A, Y )
is proper and cobounded, the subgroup H ∩ E(g,A) is finite (Proposition 5.1). Further,
since g has infinite order, H ∩ E(g,A) must be a proper subgroup of ⟨gM , H ∩ E(g,A)⟩.
This proves (ii).

The rest of the proof is devoted to establish (iii). Let θ1 = θ1(δ) ⩾ 0 be the constant
of Proposition 7.2. Let ε = max{θ0 + 2θ1, d(A, Y )}. Let L = L(δ, ε, 0) ⩾ 0 be the
constant of Corollary 4.4. By Proposition 7.9, there exists M ⩾ 1 such that for every u ∈
⟨gM , H∩E(g,A)⟩−H∩E(g,A), we have dA(Y, uY ) > L−2θ1. Let ϕ : H∗H∩E(g,A)⟨gM , H∩
E(g,A)⟩ → G be the natural homomorphism. Let w ∈ H ∗H∩E(g,A) ⟨gM , H ∩ E(g,A)⟩
such that w ̸= 1. We are going to prove that ϕ(w) ̸= 1. Note that the homomorphisms
ϕ|H and ϕ|⟨gM ,H∩E(g,A)⟩ are injective. If w ∈ H ∪ ⟨gM , H ∩ E(g,A)⟩, then ϕ(w) ̸= 1.
Assume that w ̸∈ H∪⟨gM , H∩E(g,A)⟩. Note that if there exists a conjugate w′ of w such
that ϕ(w′) ̸= 1, then ϕ(w) ̸= 1. Up to replacing w by a cyclic conjugate, there exist n ⩾ 1
and a sequence h1, k1, · · · , hn, kn ∈ G such that w = h1k1 · · ·hnkn and such that for every
i ∈ {1, · · · , n} we have hi ∈ H −H ∩E(g,A) and ki ∈ ⟨gM , H ∩E(g,A)⟩ −H ∩E(g,A).
For every i ∈ J1, nK, we denote ui = h1k1 · · ·hi and vi = h1k1 · · ·hiki. We also denote
v0 = 1G.

We are going to prove that the sequence v0Y, u1A, v1Y, · · · , unA, vnY is (δ, ε, L)-
buffering on {uiA} and then apply Corollary 4.4. Let i ∈ J1, nK. Let us prove (BS1).
Assume for a moment that i ̸= n. Since we had modified the axis A0 above, for every
j ∈ J1, nK, we have kjA = A. Hence

πuiA(ui+1A) = πviA(ui+1A),

πui+1A(uiA) = πui+1A(viA).

By Proposition 7.2,

diamviA(ui+1A) ⩽ diam(viπA(hiA)) + θ1,

diamui+1A(viA) ⩽ diam(ui+1πA(h−1
i A)) + θ1,

diamA(h−1
i A) ⩽ diamhiA(A) + θ1.

By Proposition 7.5 (i) and (ii), for every u ̸∈ E(g,A), we have max{diamA(uA),diamuA(A)} ⩽

θ0. Consequently,

max{diamuiA(ui+1A), diamui+1A(uiA)} ⩽ θ0 + 2θ1 ⩽ ε.

Let us prove (BS2). Note that,

πuiA(vi−1Y ) = πuiA(uiY ),

πuiA(viY ) = πviA(viY ).
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By Proposition 7.2,

diamuiA(uiY ) ⩽ diam(uiπA(Y )) + θ1,

diamviA(viY ) ⩽ diam(viπA(Y )) + θ1.

Since diamA(Y ) ⩽ θ0, we obtain

max{diamuiA(vi−1Y ), diamuiA(viY )} ⩽ θ0 + θ1 ⩽ ε.

Let us prove (BS3). We have,

max{d(uiA, vi−1Y ), d(uiA, viY )} = max{d(uiA, uiY ), d(viA, viY )} ⩽ d(A, Y ) ⩽ ε.

Let us prove (BS4). It follows from Proposition 7.2 (i) that,

duiA(vi−1Y, viY ) ⩾ dA(Y, kiY ) − 2θ1.

By the choice of M , we have dA(Y, kiY ) > L+ 2θ1. Hence, we have duiA(vi−1Y, viY ) ⩾ L.
This proves that the sequence v0Y, u1A, v1Y, · · · , unA, vnY is (δ, ε, L)-buffering on {uiA}.
It follows from Corollary 4.4 that dunA(Y, ϕ(w)Y ) > 0. Hence, ϕ(w) ̸= 1.

Proof of Theorem 8.2. — Theorem 8.2 is an immediate consequence of Proposition 3.1
and Proposition 8.3.

8.2. Case ω(G/H) = ω(G)

In this subsection we prove:

Theorem 8.4 (Theorem 1.13). — ω(G/H) = ω(G).

Recall that given ϕ : G → G, we say that G is ϕ-coarsely G/H if there exist θ ⩾ 0,
x ∈ X satisfying the following conditions:

(CQ1) For every u, v ∈ G, if ϕ(u)H = ϕ(v)H, then |ϕ(u)x− ϕ(v)x| ⩽ θ.

(CQ2) For every u ∈ G, |ux− ϕ(u)x| ⩽ θ.

We require the following.

Proposition 8.5. — There exist M ⩾ 1 and a map f : G → {1G, g
M } with the following

property. Let ϕ : G → G, u 7→ ufu. Then G is ϕ-coarsely G/H.

We prove some preliminar lemmas.

Lemma 8.6. — There exists θ ⩾ 0 such that for every m ∈ Z, we have diamA(gmY ) ⩽ θ.
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Proof. — Let θ1 ⩾ 0 be the constant of Proposition 2.5. We put θ = θ0 + 2θ1. Let m ∈ Z.
Let x, x′ ∈ Y . By the triangle inequality,

|gmx− gmx′|A ⩽ |πA(gmx) − gmπA(x)| + |x− x′|A + |gmπA(x′) − πA(gmx′)|.

By Proposition 2.5 (2) Coarse equivariance,

max{|πA(gmx) − gmπA(x)|, |gmπA(x′) − πA(gmx′)|} ⩽ θ1.

Moreover, we have |x − x′|A ⩽ diamA(Y ) ⩽ θ0. Since x, x′ are arbitrary, we obtain
diamA(gmY ) ⩽ θ0 + 2θ1.

Lemma 8.7. — For every ε ⩾ 0, there exists θ ⩾ 0 with the following property. Let
A1, A2 ⊂ X be δ-constricting subsets such that dHaus(A1, A2) ⩽ ε. Let x ∈ A+ε

1 and
y ∈ A+ε

2 such that |x− y|A1 ⩽ ε. Then |x− y| ⩽ θ.

Proof. — Let θ1 ⩾ 0 be the constant of Proposition 2.5. Let ε ⩾ 0. Let θ ⩾ 0. Its
exact value will be precised below. Let A1, A2 ⊂ X be δ-constricting subsets such that
dHaus(A1, A2) ⩽ ε. Let x ∈ A+ε

1 and y ∈ A+ε
2 such that |x − y|A1 ⩽ ε. By the triangle

inequality,
|x− y| ⩽ |x− πA1(x)| + |x− y|A1 + |πA1(y) − y|.

Since x, y ∈ A+2ε+1
1 , it follows from Proposition 2.5 (1) Coarse nearest-point projection

that
max{|x− πA1(x)|, |πA1(y) − y|} ⩽ µ(2ε+ 1) + θ1.

Finally, we put θ = ε+ 2µ(2ε+ 1) + 2θ1.

We are ready to prove Proposition 8.5:

Proof of Proposition 8.5. — Let θ1 ⩾ 0 be the constant of Proposition 7.2. Let θ2 ⩾ 0
be the constant of Proposition 7.5. Let θ3 ⩾ 0 be the constant of Lemma 8.6. Let
ε = max{θ2 + 2θ1, θ1 + θ3, d(A, Y ) + 1}. In particular, there exists y ∈ A+ε ∩ Y . Let
θ4 = θ4(δ, ε) ⩾ 0 be the constant of Proposition 4.2. By Proposition 7.10, there exist
M ⩾ 1 and f : G → {1G, g

M } such that for every u ∈ G, we have duA(y, uf(u)Y ) > θ4.
For every u ∈ G, we denote fu = f(u) and we put ϕ : G → G, u 7→ ufu. Let θ5 = θ5(ε) ⩾ 0
be the constant of Lemma 8.7. We put θ = max{|y − gMy|, θ5}. We are going to prove
that G is ϕ-coarsely G/H with respect to y and θ.

In order to prove (CQ1), we just need to observe that for every u ∈ G, we have

|uy − ufuy| = |y − fuy| ⩽ |y − gMy| ⩽ θ.

Let us prove (CQ2). Let u, v ∈ G. Assume that ufuH = vfvH. We claim that
dHaus(uA, vA) ⩽ θ2. By Proposition 7.5 (i), it suffices to prove that

max{diamv−1uA(A),diamA(v−1uA)} > θ2.
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We argue by contradiction. Assume instead that max{diamv−1uA(A), diamA(v−1uA)} ⩽

θ2. We are going to prove that the sequence uA, ufuY, vA is (δ, ε, 0)-buffering on {uA, vA}
and then apply Proposition 4.2. Note that the condition (BS4) is void in this case. Let
us prove (BS1). By Proposition 7.2,

diamuA(vA) ⩽ diam(uπA(u−1vA)) + θ1,

diamvA(uA) ⩽ diam(vπA(v−1uA)) + θ1,

diamA(u−1vA) ⩽ diamv−1uA(A) + θ1.

Hence,
max{diamuA(vA),diamvA(uA)} ⩽ θ2 + 2θ1 ⩽ ε.

Let us prove (BS2). By Proposition 7.2,

diamuA(ufuY ) ⩽ diam(uπA(fuY )) + θ1,

diamvA(vfvY ) ⩽ diam(vπA(fvY )) + θ1.

By Lemma 8.6, we have max{diamA(fuY ),diamA(fvY )} ⩽ θ3. Hence,

max{diamuA(ufuY ), diamvA(vfvY )} ⩽ θ1 + θ3 ⩽ ε.

Let us prove (BS3). The hypothesis ufuH = vfvH implies ufuY = vfvY and therefore

max{d(uA, ufuY ), d(vA, ufuY )} = max{d(uA, ufuY ), d(vA, vfvY )} = d(A, Y ) ⩽ ε.

Hence, the sequence uA, ufuY, vA is (δ, ε, 0)-buffering on {uA, vA}. It follows from
Proposition 4.2 that

min {duA(y, ufuY ), dvA(y, ufuY )} ⩽ θ4.

However, by construction,

min {duA(y, ufuY ), dvA(y, ufuY )} > θ4.

Contradiction. Therefore, dHaus(uA, vA) ⩽ θ2. This proves the claim. In particular,
dHaus(uA, vA) ⩽ ε. Since y ∈ A+ε, we have ufuy ∈ uA+ε and vfvy ∈ vA+ε. Since
ufuy, vfvy ∈ ufuY , we have |ufuy − vfvy|uA ⩽ diamuA(ufuY ) ⩽ ε. According to
Lemma 8.7, |ufuy − vfvy| ⩽ θ. This proves (CQ2).

Proof of Theorem 8.4. — Theorem 8.4 is an immediate consequence of Proposition 3.4
and Proposition 8.5.
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